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The thermal effect on axisymmetry breaking and transition to turbulence in the
wake of a fixed heated sphere is investigated in the mixed convection configurations
commonly known as ‘assisting’and ‘opposing’ flows in which the buoyancy tends,
respectively, to accelerate and decelerate the flow. The study is carried out in the Ri–Re
parameter plane (Ri being the mixed convection parameter – the Richardson number)
for two values of Prandtl number – 0.72 (≈air and many gases) and 7 (≈water). We
show that convection affects considerably the transition (as compared to that observed
in the wake of an unheated sphere) even at moderate Richardson numbers. The latter
are taken to be positive in assisting flow and negative in opposing one. In this
notation, it can be said that convection shifts the primary-instability threshold to
higher Reynolds numbers with increasing Richardson number. In assisting flow, the
primary bifurcation is always regular, but at Ri � 0.6 it appears in azimuthal subspaces
associated with higher azimuthal wavenumbers m > 1. The transition scenario is
characterized by a large variety of regimes explainable by nonlinear interactions
between different azimuthal subspaces. On the side of higher (positive) Richardson
numbers the axisymmetric flow is found stable up to Re = 1400 at Pr = 0.72 and
Ri = 0.7. In opposing flow, the m = 1 subspace is always the most unstable, but the
regular bifurcation gives way to a Hopf one at Ri < −0.1. Close to the junction of both
bifurcations a similar variety of regimes precedes the transition to chaos as in assisting
flow. On the side of negative Richardson numbers the primary (Hopf) bifurcation
threshold is found as low as Re =100 at Ri = −0.25 and at both investigated Prandtl
numbers. After a primary periodic regime characterized by vortex shedding with a
symmetry plane, the transition proceeds via a series of increasingly irregular helical
regimes.

1. Introduction
The mixed convection past solid bodies has many practical applications in cooling,

heating, sedimentation (Gan et al. 2003), melting (McLeod, Riley & Sparks 1996),
combustion (Ayyaswamy 1999), vaporization (Chiang & Sirignano 1993) and many
other fields of engineering and chemistry. Special interest has been focused on heated
infinite cylinders and spheres as prototypical solid bodies. The case of the sphere
presents the advantage of avoiding the end effects of the cylinder and of having
direct application in sedimentation and melting. A fixed heated sphere represents
a prototypical heat source and provides a configuration for which experiments and
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numerical simulations can be brought closer than for any other situation. Not only
heat transfer but also the modification of hydrodynamic forces by convection effects
are of interest. A hot sedimenting particle is submitted to hydrodynamic forces due
to its falling velocity and the flow of the heated fluid induced by buoyancy effects. It
is clearly seen that the forces are the result of a mixed forced and convective flow,
which is commonly known as mixed convection. In the case of a hot falling sphere
the convection adds up to the forced flow and accelerates the fluid in the wake with
respect to the particle. The flow is then called ‘assisting’. In the opposite case, that
of a cold falling sphere or a hot ascending one, the buoyancy decelerates the wake.
Such a flow is called ‘opposing’. ‘Cross-flow’ with a flow direction perpendicular to
gravity has mostly been investigated for cylinders (Lecordier, Hamma & Paranthoen
1991; Wang, Trávnı́ček & Chia 2000; Wu & Wang 2007), although a certain number
of, basically experimental, results are also available for spheres (e.g. Yuge 1960). The
investigation of cross-flows aims mainly at cooling.

Experimental investigations concern mostly both the assisting and opposing flows
past a sphere. The work by Yuge (1960), Klyachko (1963), Katoshevski et al. (2001),
Bar-Ziv et al. (2002), Mograbi et al. (2002) and Mograbi & Bar-Ziv (2005a , b) focused
mainly on acquisition of data concerning the drag and heat flux (drag coefficient and
Nusselt number). Work investigating details of the flow is less common (see Tang
& Johnson 1990). Experimental investigations of heated spheres present numerous
technical problems, which stimulated, very early, numerical simulations. Most of the
bibliography is involved with pure convection (see Geoola & Cornish 1982; Dudek
et al. 1988; Jia & Gogos 1996). Numerical papers dealing with mixed convection past a
sphere are less frequent. The earliest works used approximations to bring the problem
within reach of available computing power. Hieber & Gebhart (1969) considered
small Reynolds and Grashof numbers and applied asymptotic expansions to obtain
approximations for the drag coefficient and Nusselt number. Chen & Mucoglu (1977)
and Mucoglu & Chen (1978) solved the flow past a heated sphere with a boundary
layer approximation assuming high Reynolds (Re) and Grashof (Gr) numbers. Such
a problem presents only one parameter (the Richardson number, Ri = Gr/Re2, for
a fixed Prandtl number, considered equal to 0.7). Both extreme cases of large and
small Richardson numbers are investigated for the relevance of the mixed convection
and inertia effect. Probably the first to solve the full Navier–Stokes–heat transfer
problem, albeit limited to the case of assisting flow, were Wong, Lee & Chen (1986)
for Reynolds numbers ranging from 5 to 100 and for several values of Richardson
number. A recent simulation of assisting flow by Bhattacharyya & Singh (2008)
focuses on Re =1, 150 and 200 and Ri = 0, 0.5 and 1 and states the recirculation
zone disappears due to the convective plume. Nguyen, Paik & Chung (1993) solved
the conjugate problem including the heat conduction inside the sphere for Reynolds
numbers ranging from 10 to 100 and Grashof numbers up to 105 (Richardson numbers
up to 40). They found the effect of gravity-induced flow on the drag coefficient and
Nusselt number to be small. Mograbi & Bar-Ziv (2005a) found a very significant
gravity-induced effect at Reynolds numbers and Grashof numbers smaller than 1.
In particular, in the case of opposing flow, they discovered the formation of a large
recirculation ‘when buoyant forces overcome inertia and viscous forces’. This situation
is found to occur at ζ ≈ 1 (where ζ is a mixed convection parameter introduced by
Mograbi & Bar-Ziv 2005a and defined as ζ =1/Ri). For ζ < 1 the sphere is immersed
in a recirculation plume, and the drag is found to be practically constant and equal
to the value due to pure convection. For ζ � 1 the proportionality to the square
of velocity (square of the Reynolds number) characteristic of drag without buoyant
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effects is recovered. The recirculation seems to grow to infinity: ‘in order to obtain
adequate results for the mixed convection problem the computational domain must
be enormous’. At Gr = 0.01 and ζ = 0.81, the radius of the recirculation is found to
exceed 250 sphere diameters.

The published numerical simulations of mixed convection past a sphere map only
very sparsely the space of all three parameters (Reynolds, Richardson and Prandtl
numbers), and are all axisymmetric. For this reason, in a recent paper (see Kotouč,
Bouchet & Dušek 2008), we investigated axisymmetric assisting flow in a large
domain of the three-parameter space. The stabilizing effect of convection in assisting
flow let us expect that axisymmetric simulations might remain valid up to much
higher Reynolds numbers than in the wake of an unheated sphere we explored albeit
imperfectly as appears in the present paper – the question of validity of axisymmetric
simulations. In aerosols, the particles are usually so small that the flow regimes do
not exceed Re, Gr ∼ 1, but as soon as the asymptotic velocity or the convection
becomes large the flow has to be expected to leave the axisymmetric laminar
regime. In view of increasingly frequent and increasingly accurate numerical results
appearing in literature, setting accurate limits of the stability of axisymmetric flow has
become important. As a consequence we completed the axisymmetric investigation
of assisting flow in Kotouč et al. (2008) by computing the threshold of the primary,
axisymmetry-breaking bifurcation up to a Richardson number of 0.7 at Pr = 0.72
and up to Ri = 0.35 for Pr = 7. The threshold was obtained by evaluating the least
stable eigenvalue of the linearized Navier–Stokes operator projected onto the m =1
azimuthal subspace known to be the least stable in all similar configurations such as an
unheated sphere wake (Natarajan & Acrivos 1993; Johnson & Patel 1999; Ormières
& Provansal 1999; Ghidersa & Dušek 2000) and a round cold jet (Michalke 1984).

One of the results of Kotouč et al. (2008) consists in presenting a state diagram
delimiting axisymmetric flow regimes arising due the onset of a convective plume in
the recirculation zone (reported also in Bhattacharyya & Singh 2008). The diagram, as
well as the whole previous study, was delimited by the primary-bifurcation threshold.
The present paper aims at investigating what happens between the primary bifurcation
and the onset of a chaotic wake considered to represent an early stage of turbulence.
In § 2, we briefly review and discuss the mathematical formulation of the problem
and the used numerical method. In § § 3 and 4 the breaking of axisymmetry is studied.
Section 5 sums up the method of presentation of the transition states found in
following sections. Section 6 is devoted to the determination of limits of the scenario
known to apply to the wake of an unheated sphere. The transitional regimes specific
for assisting and opposing flows are investigated in § § 7 and 8, respectively. The results
are summed up in the form of state diagrams in figures 2 and 4. Section 9 focuses
on hydrodynamic forces and the heat transfer. For more graphic material refer to
Kotouč (2008).

2. Mathematical formulation and numerical method
Our numerical simulations represent a heated sphere with a constant surface

temperature immersed in a cold incompressible fluid. For the problem description
and coordinate system definition, see figure 1(a). This situation is mathematically
described by a system of Navier–Stokes equations coupled with energy equation (see
e.g. Jia & Gogos 1996) for the unsteady flow of an incompressible fluid with constant
properties. The buoyancy effects are characterized, in agreement with all the numerical
work cited above, by the Boussinesq approximation. The Boussinesq approximation,
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Figure 1. (a) Problem description and coordinate system; (b) example of a computational
domain of 230 elements with collocation points of the upper left element (the order of
Gauss–Lobatto–Legendre polynomials being six in both directions).

discussed briefly in Kotouč et al. (2008), limits the scope of applications but has the
advantage of setting a mathematical framework that has become standard and allows
to reduce the parameter space to three widely used non-dimensionalized parameters.

In Kotouč et al. (2008) an example of configuration satisfying the limitations of
the Boussinesq approximation is suggested: a sphere of 11 cm diameter, placed in an
airflow of 0.2 m s−1 and heated 8◦ above the surrounding temperature represents a
configuration with Re =1500 and Ri = 0.7. In these conditions the viscous dissipation
term is of the order of 10−6 and is not considered in agreement with all the
numerical bibliography using the Boussinesq approximation. In practical applications,
the weakest point of the so defined model is the Boussinesq approximation itself,
namely the constant fluid properties, not the absence of viscous dissipation. It is
widely admitted that, in air, the tolerable temperature difference is at most about 15
K at 20◦ C and, in water, as few as 2 K at the same temperature.

The fluid properties are the density ρ at the temperature far from the sphere, the
kinematic viscosity ν, the thermal conductivity λ, the specific heat at constant pressure
cp and the coefficient of thermal expansion β . The equations are non-dimensionalized
using the following scalings: the sphere diameter d as a length scale, the free stream
velocity v∞ as a velocity scale, d/v∞ as a time scale and ρv2

∞ as a pressure scale.
The dimensionless temperature is defined as T ∗ = (T − T∞)/(TS − T∞) with T∞ the
fluid temperature far from the sphere and TS the temperature of the sphere surface
(assumed to be constant and uniform) . In what follows, we omit the symbol ‘∗’ in
the notation of the non-dimensionalized quantities; thus v, p and T stand for non-
dimensionalized velocity, pressure and temperature, respectively. In plots representing
quantities vs. time in this paper, the non-dimensionalized time is taken in time units
equal to d/v∞. The dimensionless equations become

∇ · v = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
∇2v + Ri T i, (2.2)

∂T

∂t
+ (v · ∇)T =

1

Re.Pr
∇2T , (2.3)

where i = v∞/v∞ stands for the unit vector of dimensionless far stream velocity. The
non-dimensionalization reduces the parameters to three non-dimensional numbers –
Reynolds number (Re), Richardson number (Ri ) and Prandtl number (Pr) – defined
as follows:

Re =
v∞d

ν
, Ri = −β (i · g) (TS − T∞)d

v2
∞

, Pr =
ν

κ
, (2.4)
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where κ stands for the thermal diffusivity; κ = λ/ρcp; and g is the gravitational
acceleration.

The notation accommodates both the assisting and opposing flows represented,
respectively, by a positive and a negative sign of the Richardson number, Ri .
Experimentally, the assisting (opposing) flow is obtained e.g. by placing a heated
sphere into an upward (downward) oriented vertical flow, which yields indeed a
positive (negative) sign in the definition of the Richardson number of (2.4).

The sphere is placed in a cylindrical domain with its axis parallel to the flow
direction. The method of spatial discretization is that of earlier papers (see Ghidersa &
Dušek 2000; Jenny & Dušek 2004; Kotouč et al. 2008), combining a spectral element
discretization in the radial–axial plane with a spectral azimuthal decomposition
(expansion into azimuthal Fourier modes, numbered by integer m � 0 in what follows).
Figure 1 presents an example of a spectral element mesh in the radial–axial plane. The
method proved to be optimal for the investigation of flows undergoing axisymmetry
breaking for two basic reasons. Firstly it allows for an easy theoretical analysis
using the linear and weakly nonlinear theories, and secondly it provides an optimal
numerical efficiency making it possible to simulate relatively complicated dynamics
of three-dimensional flows at low costs. The reduced costs are especially welcome if
parametric studies are tackled. In Jenny, Dušek & Bouchet (2004) a two-parametric
study could be obtained in this way in the configuration of a freely moving sphere.
The minimal description of the configuration of the heated fixed sphere comprises
three parameters, and in what follows, we investigate four parameter half-planes in
this space. The complexity of the scenario in each half-plane appears to be much
higher in presence of thermal effects, and the necessity to push the investigation to
Reynolds numbers exceeding 1000 requires a very high resolution of the boundary
layer. A sufficient spatial resolution appeared to be especially crucial in removing
spurious instabilities and spurious regimes excited numerically by the spectral element
discretization, namely inaccuracies at the spectral element interfaces (see Patera 1984).

The quest for the highest possible accuracy at the lowest costs led us to extensive
testing and optimization of the numerical parameters. The size of the domain, as well
as the order of polynomials in each spectral element, was thoroughly tested for both
Prandtl numbers in all the simulated regimes and adapted so that neither its extension
upstream, downstream and sidewise nor an increase of the number of collocation
points in each element brought significant changes to the flow. Not only the computed
drag coefficient and Nusselt number but, in the transitional domain, also the primary-
instability threshold and the stability of all investigated strongly nonlinear regimes
were verified to be insensitive to further mesh refinement and also to the increase
of the number of used azimuthal modes (see Kotouč et al. 2008 for more details on
the testing). Each regime having its specificity (e.g. a higher Prandtl number implies
a thinner thermal boundary layer necessitating a higher resolution; low Reynolds
numbers and high negative Richardson number require large lateral and upstream
domain extension), a great variety of spectral element meshes had to be used to
get an optimal discretization. Table 1 sums up the discretization parameters of the
domains: the domain size, the order of used Gauss–Lobatto–Legendre polynomials
in both directions in each element and the overall number of elements in the mesh
as a function of Reynolds and Prandtl numbers. For Pr = 7, where the boundary
layers are much thinner than for Pr =0.72, the mesh was significantly refined in
the boundary layer of the sphere, which makes the overall number of elements for
Pr = 7 always higher than for Pr = 0.72. The thin thermal boundary layer obliged us
also to restrict the scope of investigated Reynolds numbers from up to Re � 1500 at
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Assisting flow (Ri > 0)

Pr = 0.72 Pr = 7

Re
Lin

d

Lout

d

Lrad

d
NE NP Re

Lin

d

Lout

d

Lrad

d
NE NP

50−99 50 60 52 230 6 50−99 50 60 52 312 7
100−199 25 60 25 212 7 100−199 25 60 25 270 8
200−399 12 25 8 169 8 200−399 12 24 8 295 8
400−999 12 25 8 169 10 400−600 12 24 8 295 10

1000−1400 12 24 8 230 12

Opposing flow (Ri < 0)

Pr = 0.72 Pr = 7

Re
Lin

d

Lout

d

Lrad

d
NE NP Re

Lin

d

Lout

d

Lrad

d
NE NP

50−99 25 64 25 270 6 50−99 25 64 25 270 7
100−199 12 25 8 169 7 100−199 12 25 8 169 8
200−350 12 25 8 169 8 200−350 12 24 8 295 8

Table 1. Upstream (Lin/d) and downstream (Lout/d) lengths and radii (Lrad/d) of the
computational domain; overall number of elements in the mesh (NE) and number of
collocation points per element direction (NP) for intervals of Re indicated in the first column.

Pr = 0.72 to Re � 600 at Pr = 7. Finally the number of used modes in the Fourier
azimuthal expansion was also tested and varied in three-dimensional simulations. The
highest mode used varied from 3 to 10, depending on the distance from the threshold
of axisymmetry breaking.

3. Axisymmetric assisting flow and primary, axisymmetry-breaking bifurcations
3.1. Axisymmetric flow

For assisting flow, the axisymmetric flow regime was investigated in Kotouč et al.
(2008). The most striking feature of assisting flow is the onset of a convective plume
in the recirculation zone downstream of the sphere. Three different regimes could be
distinguished: a completely attached flow such as that widely known to be typical for
a flow past an unheated sphere at Reynolds numbers smaller than 20 (see Bouchet,
Mebarek & Dušek for a more detailed discussion). At Pr = 0.72, the convection shifts
the existence of attached flow up to Re = 700 at Ri = 0.7. At Richardson numbers
smaller than 0.4 the boundary layer detaches to form a recirculation zone along the
flow axis. At Ri � 0.4 the convection is, however, strong enough to let a convective
plume pierce the recirculation zone and to make the boundary layer reattach upstream
of the rear stagnation point. Instead of a usual recirculation zone we are in presence
of a recirculation torus. At the very onset of this flow regime (when Re is increased
and Ri kept fixed) the torus is very thin. It grows with growing Reynolds number until
it reaches the flow axis and forms a usual recirculation zone. The same behaviour
was observed at Pr = 7 albeit shifted to lower Richardson numbers. In view of the
experience with axisymmetry breaking an attempt was made to set the upper limit of
stability of the axisymmetric flow. The results were summed up in two diagrams, in
the two selected Pr = constant planes with a horizontal Ri axis and a vertical Re axis
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delimited from above by the maximum Reynolds number at which both the dynamic
and the thermal boundary layers could be resolved at acceptable costs and at the
right (on the side of higher Richardson numbers) by the Richardson number at which
the axisymmetric flow computed at the highest Reynolds number was still found to
become unstable. The purpose of the present section is to fill the unmapped domain
above the instability threshold of Kotouč et al. (2008). The new diagrams presented
in figure 2 include the axisymmetric regimes described in Kotouč et al. (2008) below
the thick lines marking the primary-instability threshold.

3.2. Primary bifurcation and loss of axisymmetry

As explained in Ghidersa & Dušek (2000), the linear analysis of the breaking of
axisymmetry can be decomposed into a sequence of independent eigenvalue problems,
each being resolved in a subspace associated with a given azimuthal wavenumber
of perturbations. The primary instability arises in the subspace in which the first
eigenvalue becomes unstable (i.e. the real part of which becomes positive). It is well
known that in the wake of an unheated sphere this subspace corresponds to m =1
and that the unstable eigenvalue is real. (The primary bifurcation is regular.)

In Kotouč et al. (2008), the investigation of the threshold of axisymmetry breaking
of the flow was limited to a subspace corresponding to the azimuthal subspace with
wavenumber m =1. More recent numerical investigations have shown, however, that
at Pr = 0.72, the first mode to become unstable corresponds to the wavenumber
m = 1 only for Ri < 0.590. For 0.590 < Ri < 0.714, the primary instability sets in
the m =2 subspace and for 0.714 <Ri � 0.75 (where Ri =0.75 is the upper limit
of the investigation) in the m =3 subspace. The three cases are distinguished by
three decreasing levels of grey in which the line representing the primary-bifurcation
threshold is plotted in figure 2. More accurately, the point at which both (real)
eigenvalues become unstable in m =1 and m =2 subspaces was found to be Ri =0.590
and Re = 991, and the same point at which m =2 and m =3 subspaces become
simultaneously unstable corresponds to Ri = 0.714 and Re = 1309. Although the
investigation was not pushed beyond it is likely that the azimuthal wavenumber of
the most unstable mode grows very rapidly further with Ri . The common feature of
all cases is that the axisymmetry is broken via a regular bifurcation.

The reason of the increase of the azimuthal wavenumber of the primary instability
is the changing aspect of the base flow with increasing Ri described above in § 3.1. As
already said, a convective plume limits the recirculation to a recirculation torus off the
flow axis starting from Ri = 0.4 at Pr =0.72. In an interval of Richardson numbers
smaller than 0.6 this torus grows with Re and eventually reaches the flow axis before
the instability sets in. Beyond Ri =0.6, the axisymmetry-breaking instability sets in at
a stage at which the torus has not yet reached the flow axis. The unstable base flow
presents thus a recirculation zone with a cross-section of a significantly smaller length
than its radius. As a result, the base flow is more receptive to perturbations with
a higher azimuthal wavenumber. Figure 3 shows three axisymmetric flow patterns
slightly above the three-dimensionality threshold. The flow in figure 3(a) becomes
unstable in the m =1 subspace – the recirculation zone touches the flow axis, and
the size of the cross-section is comparable to its radius. Figure 3(b) presents a flow
in which the most unstable mode is associated with the wavenumber m =2 – the
recirculation torus no longer touches the flow axis. Finally, figure 3(c) presents a thin
recirculation torus in base flow becoming unstable in the m =3 subspace.

Within the limits of the investigated parameter plane at Pr = 7, given by the CPU
limitations, the threshold of axisymmetry breaking was always found at regimes
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Figure 2. Assisting flow: diagrams of regimes. Thick line: primary-instability threshold.
Shading: most unstable subspace – black: m= 1; grey: m= 2; light grey: m= 3. Below
the threshold: axisymmetric regimes. (∗ attached flow, + recirculation at the flow axis, ×
recirculation off the flow axis). Three-dimensional states – triangles: steady (I, IV, V); empty
circles (II): periodic vortex shedding with symmetry plane; empty diamonds (VI, VII): periodic
with symmetry plane without vortex shedding; full diamonds (IX, X): periodic rotating; double
symbols (III, VIII, XI): quasi-periodic states; � (XII): chaos.

in which the recirculation torus reached the axis. As a consequence, the primary
instability was always found to set in with an amplified mode lying in the m = 1
subspace. Let us note that the CPU time needed to investigate regimes in the upper
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(a) (b) (c)

Figure 3. Streamlines of three different axisymmetric flow patterns, presenting (a) a
recirculation zone at the flow axis at Ri =0.55, Re = 800, (b) a recirculation torus off the
flow axis at Ri =0.6, Re = 1020 and (c) a confined recirculation torus off the flow axis at
Ri =0.75, Re = 1420.

Pr = 0.72

Ri 0 0.1 0.2 0.3 0.4 0.5 0.55 0.590 0.6 0.65 0.7 0.714 0.75
Re1 212.0 257.1 316.4 397.7 512.0 679.4 786.9 991.4 1012 1118 1271 1309 1409
m 1 1 1 1 1 1 1 1, 2 2 2 2 2, 3 3

Pr = 7

Ri 0 0.05 0.1 0.15 0.2 0.25 0.3
Re1 212.0 225.1 240.0 261.3 287.5 324.1 382.3
m 1 1 1 1 1 1 1

Table 2. Thresholds of the primary (regular) bifurcation Re1 and corresponding most unstable
azimuthal mode m depending on the Richardson number for both Pr = 0.72 and Pr = 7. Two
values for most unstable azimuthal mode for one Richardson number mean that both modes
become unstable at the same time (border cases).

right part of the diagram is not proportional to the CPU time needed to cover one
time unit with a refined spatial discretization. By far the greatest part of the increase
is due to the necessity to run the simulation for many time units to converge to an
asymptotic regime not speaking about the CPU consumed for mesh optimization
and for removing spurious regimes. Just to provide an example, the steady regime at
Ri = 0.3 and Re =600 (upper right corner) of the Pr =7 diagram in figure 2 could
be identified as indeed asymptotically steady only after many weeks of simulations.
It can be conjectured that the primary instability will appear in m > 1 subspaces at
Richardson numbers lying beyond the scope of the diagram.

The thick solid, black, grey and light grey lines connect the thresholds of the
onset of three-dimensionality with the most unstable mode corresponding to the
azimuthal wavenumbers m = 1, m =2 and m =3. The computed instability thresholds
for both investigated Prandtl number values are recalled in table 2. The three-
dimensional regimes represented above the threshold line are analysed in the following
sections.

4. Axisymmetric opposing flow and loss of its axisymmetry
4.1. Axisymmetric flow

In contrast to the stabilizing effect of the buoyancy-driven flow in the assisting flow
configuration, resulting in a later appearance of the axisymmetric recirculation zone
downstream of the sphere for higher Richardson numbers (see Kotouč et al. 2008),
the effect of buoyancy in opposing flow is opposite – it lowers the critical Reynolds
number Rerec of the onset of the recirculation zone. The critical Reynolds number



214 M. Kotouč, G. Bouchet and J. Dušek

Pr = 0.72

Ri 0 −0.1 −0.119 −0.133 −0.153 −0.172 −0.2 −0.3 −0.4 −0.5

Re1 212 180 175 171.6 160 150 127.2 75.7 46.3 29.4

St 0 0 0 0, 8.42 × 10−2 7.99 × 10−2 7.61 × 10−2 7.28 × 10−2 5.16 × 10−2 2.48 × 10−2 1.54 × 10−2

Pr = 7

Ri 0 −0.05 −0.098 −0.1 −0.13 −0.15 −0.156 −0.2 −0.3 −0.4

Re1 212 201 185 183.6 173.6 167.8 166.3 144.2 92 61.6

St 0 0 0 4.33 × 10−3 5.03 × 10−3 5.57 × 10−3 5.92 × 10−3, 8.79 × 10−2 8.58 × 10−2 8.12 × 10−2 7.64 × 10−2

Table 3. Thresholds of the primary instability and the respective Strouhal numbers
(imaginary parts of the unstable eigenvalues divided by 2π).

for the onset of recirculation decreases when the absolute value of Ri increases in
opposing flow. Although we did not perform a detailed study of the dependence of
Rerec on the Richardson number (the reason being the necessity of using completely
different – extremely large but looser – computational domains at very low Reynolds
numbers), we found that at Pr = 0.72 and Ri = −0.3, −0.6 and −0.9, the recirculation
zone exists already, respectively, at Re = 10, 5 and 1. Moreover, we found that at
these very low Reynolds numbers and relatively large Richardson numbers, a further
increase of the absolute value of Ri at a constant Re makes the flow become
unstable. The buoyancy reverses the flow direction close to the sphere and yields
a reverse plume. Actually, such a flow becomes three-dimensional and immediately
chaotic; thus there is not much interest in pushing the investigation of axisymmetric
flow to this domain of parameters. Nevertheless, the reversal of the thermal plume
was observed at Ri ≈ −0.8 at Re =10 and at Ri ≈ −1.5 at Re = 1. The study of the
transition to three-dimensionality of the thermal plume at high Ri in opposing flow
is beyond the scope of this paper.

The flow at Pr = 7 presents, at all parameter sets, a smaller recirculation zone.
This agrees with the observation that the size of a recirculation zone is linked to the
transition to three-dimensionality – the transition at Pr = 0.72 sets in at a lower Re
at a constant Ri or at a lower Ri at a constant Re than at Pr = 7.

It is also worth noting that there is no qualitative change in the flow aspect of the
base flow at Ri ≈ −0.13 when the primary bifurcation changes from regular to Hopf.

4.2. Primary bifurcation and loss of axisymmetry

At Pr = 0.72 the primary instability was found in the m =1 azimuthal subspace
only within a limited interval of Richardson numbers. It was argued that it could
be explained by the presence of a convective plume limiting the recirculation to
a recirculation torus getting thinner and thinner. In opposing flow, the trend is
rather towards an enhanced recirculation. The recirculation zone develops at flow
axis at decreasing Reynolds numbers so that the instability sets in systematically
in a base flow with a well-developed recirculation. The primary instability has thus
to be expected to arise always in the m =1 subspace. Moreover, in agreement with
the general observation of the link between the size of the recirculation domain
and the instability of the base flow, the convection is to be expected to have a
destabilizing effect. The most striking feature of the opposing flow results from a
different variation of the real parts of the least stable real eigenvalue and those of
the least stable eigenpair. Table 3 sums up the thresholds of the primary instability
depending on the Richardson number.
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At Pr = 0.72, table 3 shows that at Ri = −0.13 the complex eigenpair starts to
be more unstable than the real eigenvalue, i.e. at Ri = −0.133 and Re =171.6, the
regular bifurcation gives way to a Hopf one. This is to be expected to have a
significant impact on the next stages of transition in the same way, as will be shown
in the case of assisting flow, that the interplay of unstable azimuthal subspaces is
responsible for the specificities of the scenario. The results dealing with opposing flow
are summarized, again, in the form of two state diagrams in the Pr = 0.72 and Pr =7
planes parametrized by varying Richardson and Reynolds numbers plotted in figure 4.
In principle, both diagrams for Ri > 0 and Ri < 0 at the same Pr can be joined along
the Ri = 0 line. Because of the different scales of plots we found it preferable to keep
the figures separate. The primary-instability threshold is materialized by a thick line
for the regular bifurcation and a thick dotted line for the Hopf one.

At Pr = 7 we found a still more interesting situation. If the Reynolds number is
progressively increased from some subcritical value at a fixed Richardson number
between −0.098 and −0.156 a pair of complex conjugate eigenvalues crosses the
imaginary axis yielding a Hopf bifurcation, but very soon after it collides and forms
a pair of two real eigenvalues. As a result, this Hopf bifurcation, characterized by a
very small Strouhal number, is related to the same eigenvalue as the regular one, but
the real eigenvalue has become complex in a collision with a second, more stable, real
eigenvalue. Figure 5 represents the details of this eigenvalue collision at a constant
Ri = −0.1 and for Re ∈ [180, 190] obtained by linear analysis. At Re = 180 we are
in presence of a stable complex eigenpair. (The point Ri = −0.1, Re =180 lies below
the primary-instability threshold in figure 4.) The threshold lies at Re = 183.5; i.e. the
eigenpair crosses the imaginary axis between Re = 180 and Re =185. The primary-
instability threshold corresponds to a Hopf bifurcation. At Re = 189 both complex
eigenvalues collide in the Re(λ) > 0 half-plane. They give rise to a pair of real, initially
unstable, eigenvalues, one of which moves to the left and the other to the right. At
Re =190 the left eigenvalue has already become stable. The complex eigenpair has,
of course, a zero imaginary part at the collision point. The imaginary part of the
complex eigenvalue at the instability threshold is about 0.0027 (at this Richardson
number), which corresponds to the Strouhal number St = 4.10−4; i.e. the characteristic
frequency of this Hopf bifurcation is much smaller than that of the complex eigenpair
responsible for the primary Hopf bifurcation found at Pr = 0.72.

Viewed along the primary-bifurcation threshold line followed from zero to higher
(more negative) Richardson numbers, for Ri > −0.1 the least stable eigenvalue is
real and is accompanied by a second more stable eigenvalue. At Ri = −0.1 both
real eigenvalues meet at the primary-instability threshold and give rise to a complex
eigenpair, which represents the least stable eigenvalues for Ri < −0.1. The low-
frequency Hopf bifurcation is a continuation of the regular one and represents the
primary bifurcation in the interval of Ri varying from −0.098 to −0.156. It is
interesting to note that the middle of this interval lies at Ri = −0.13, the value at
which the regular and Hopf bifurcations meet at Pr =0.72. Starting from Richardson
number Ri = −0.156 the ‘ordinary’ high-frequency Hopf bifurcation with St ∼ 0.1 sets
in because the high-frequency eigenpair becomes more unstable. The newly appeared
low-frequency eigenpair is directly visible on the transition scenario only in the closest
vicinity of the primary-bifurcation threshold; nevertheless it complicates the scenario
far into the transition.

In the same way as for assisting flow, the primary-instability threshold only weakly
depends on the Prandtl number. This is approximately true also for the thresholds of
higher supercritical regimes.
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Figure 4. Diagrams of regimes of opposing flow. Thick line: regular bifurcation; dashed line:
high-frequency Hopf bifurcation; dash-dotted line (Pr =7): low-frequency Hopf bifurcation.
XIII: slowly rotating helical regime with a non-zero regular mode – perfectly ordered and less
ordered; XIV, XX: periodic and quasi-periodic vortex shedding with planar symmetry and
zero mean lift; XV: slowly rotating helical regime (no regular mode) – perfectly ordered and
less ordered; XVI: slow helical regime; XVII: slow helical mode with rapid oscillations with
non-zero helicity; XVIII: slowly laterally oscillating helical regimes; left-pointing triangle: less
ordered version of the same state.
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Figure 5. Paths of the colliding pair of complex eigenvalues giving rise to a pair of real
eigenvalues. The path is parameterized at Ri = −0.1 and Re ∈ [180, 190]. The points obtained
by linear analysis are represented by circles and are labelled by the corresponding Reynolds
number value.

5. General remarks on the method of investigation of parameter planes and on
the visualization of results

The following sections describe the three-dimensional flow patterns evidenced when
sweeping the two Ri–Re parameter planes or, more accurately, four half-planes
(Ri > 0 and Ri < 0). The method of investigation of the scenario of transition to
turbulence is that of varying the Reynolds number at a constant Richardson number:
at a fixed Ri , we increased the Reynolds number up to Re = 1400 at Pr =0.72 and up
to Re = 600 at Pr = 7, the highest Richardson numbers investigated being Ri = 0.7
(Pr =0.72) and Ri = 0.3 (Pr = 7). As already explained, the limits of the investigated
domains were largely given by the CPU costs. Let us remark that the latest stages
of transition at high Ri and Re require not only much higher spatial resolution and
thus higher computing costs per unit time scale but, more importantly, also present
complicated dynamics, the analysis of which demands very long runs over very many
time units. It is worth mentioning that the investigation of such regimes at Pr = 0.72
and Ri � 0.4, Re � 1000 took about 90 % of the overall CPU time spent on the
simulations in this parameter plane and that it was outright prohibitive to tackle the
investigation beyond Re = 600 in the Pr = 7 parameter plane.

In three-dimensional simulations, the number of azimuthal modes taken into
account adds an additional parameter to those mentioned in table 1. In agreement
with the theoretical considerations of Ghidersa & Dušek (2000), the decrease of
azimuthal modes depending on the azimuthal wavenumber is exponential. (We
verified that the decrease of modes measured in terms of their energy is actually very
close to exponential even for 11 modes.) For many three-dimensional simulations,
testing showed that four azimuthal modes (0 to 3) provided a satisfactory accuracy.
Nevertheless, as Ri and Re increase, the flow presents more complicated structures
in the azimuthal direction, and the number of azimuthal modes taken into account
has to be raised. All the simulations of the ‘stiff’ regimes (Ri � 0.4 and Re � 1000 at
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Pr = 0.72 and Ri = 0.3 and Re � 500 at Pr = 7) were performed with seven azimuthal
modes.

The classification of observed regimes, briefly described in the legends of figures 2
and 4, distinguishes regimes characterized by specific dynamics. The roman numbering
is intended to facilitate references to figures and explanatory text.

Before proceeding with the description of the various regimes there remains to
explain the method of flow visualization used throughout the paper. A summarizing
and often sufficient information is provided by the hydrodynamic force. We use the
non-dimensionalized vector (treated as a three-component vector Ch.f. = (Cx, Cy, Cz)),
defined as

Ch.f. =
F

1

2
ρv2

∞
πd2

4

, (5.1)

where F is the total hydrodynamic force acting on the sphere. In what follows,
Cx ≡ CD will be referred to as drag coefficient and the remaining two-component
vector (Cy, Cz) as a lift coefficent, the norm of which will be denoted CL. The plots
of (Cy, Cz) provide good information on the transitional states. To provide exhaustive
information on the flow itself would consists in describing all the computed fields:
three velocity components, pressure and temperature. Plotting isosurfaces of quantities
has become a common visualization method even though a single isosurface is far
from reflecting the whole three-dimensional reality. Even so, it is impractical to
represent all computed fields for the many regimes evidenced at the transition. It is
thus sufficient to choose one of them, possibly that which suits best for discerning
the most important features of the flow, such as axial vorticity. Its most obvious
advantage consists in the fact that it is zero for axisymmetric flow and that it reveals
the shed vortices. The method of Jeong & Hussain (1995) yielding almost equivalent
plots is also sometimes used for comparison.

All the presented plots focus on the asymptotic regimes; i.e. in many cases the
transients have been truncated. Especially at the ultimate stages of transition, the
attractors are only very marginally stable, and the transients are very long to disappear.
Conversely, the attractors become only very weakly unstable if the regime changes. To
save (weeks of) CPU time, we proceeded both ways, from more to less ordered states
and back, to obtain each time a weak and a strong perturbation of the investigated
attractor. In the same time, such an approach provides a relatively reliable means of
detecting hysteretic behaviour (see e.g. Jenny et al. 2004). In this work we found no
case of hysteresis.

6. Regimes of a weakly heated sphere wake
At the start of our investigation, we expected to find the same scenario as the

one typical for an unheated sphere wake just shifted to higher and lower Reynolds
numbers for assisting and opposing flows, respectively. This conjecture was verified
only in a very limited domain along the Ri = 0 axis. The domain is almost triangular
on the opposing flow side (figure 4), delimited roughly by a straight line connecting
the junction of the regular and Hopf bifurcations to the threshold of a chaotic flow
at Ri = 0 and Re = 360. On the assisting flow side (figure 2) it is cut off by the
vertical line of stable steady states transiting directly to chaos at Ri = 0.3 evidenced
at Pr = 0.72. The regimes in this zone have the same characteristics for opposing and
assisting flows, therefore we reserve a special section for them.
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(a)ı (b)ı (c)ı

Figure 6. Three types of steady flow. Isosurfaces of axial vorticity at Pr = 0.72. (a) Regime
I: bifid wake with symmetry plane at Ri = 0.2 and Re =400; ωx = ±0.1. (b) Regime II: wake
with four vorticity threads and two symmetry planes at Ri = 0.6 and Re = 1100; ωx = ±0.01.
(c) Regime III: wake with six vorticity threads and three symmetry planes at Ri = 0.7 and
Re = 1300; ωx = ±0.001.

The transition in the wake of an unheated sphere proceeds via three widely
known stages: a steady non-axisymmetric regime, a periodic oscillating regime (see
Natarajan & Acrivos 1993; Johnson & Patel 1999; Ghidersa & Dušek 2000) and a
quasi-periodic regime (Mittal 1999; Bouchet et al. 2006). The quasi-periodic regime
appears as a precursor of the transition to chaos in many configurations such as a
cylinder (Thompson, Hourigan & Sheridan 1996) and a normal flat plate (Najjar &
Balachandar 1996; Wu et al. 2005).

6.1. Steady flow with two contra-rotating vorticity threads and a symmetry plane (I)

Similar to the case of an unheated sphere, a steady wake with two contra-rotating
vorticity threads shifted off the flow axis and keeping a plane of symmetry is the
first pattern that the flow assumes when the axisymmetry is broken. The bifid aspect
of the wake is due to the wavenumber m =1 (periodicity of 2π and opposite signs
of the vorticity threads) of the most unstable azimuthal mode at the threshold of
three-dimensionality. The m =1 subspace was found to be the most unstable up to
Ri = 0.590 at Pr = 0.72 and for all Ri investigated at Pr =7. The upper limit found
at Pr = 0.72 was determined by an accurate linear analysis. Such a flow presents a
non-zero lift coefficient. The aspect of the flow is shown in figure 6(a) (isosurfaces
of axial vorticity) for Ri = 0.2, Re = 400 and Pr = 0.72. Note that for axisymmetric
flows the axial vorticity is zero, which makes the axial vorticity a convenient quantity
to visualize while describing axisymmetry breaking. The isosurface of temperature in
the same regime is represented in Kotouč et al. (2008).

6.2. Periodic vortex shedding with planar symmetry and non-zero mean lift (II)

The secondary (Hopf) bifurcation, due to a nonlinear excitation of a complex eigenpair
of the same m = 1 subspace by the already-developed steady mode makes the bifid
wake oscillate periodically while keeping the formerly chosen symmetry plane. The
periodic wake found at Ri � 0.2 at Pr = 0.72 and Pr = 7 exhibits the typical periodic
vortex shedding. The bifid wake being shifted off the flow axis in the three-dimensional
steady regime, the average position of the oscillating vorticity threads after the onset
of the secondary bifurcation is shifted too, and the average lift force is thus non-
zero. The lift coefficient, as well as other quantities in the wake, presents a periodic
behaviour characteristic of a limit cycle. To illustrate the flow pattern, the axial
vorticity isosurfaces (figure 7a) and the visualization of vortical structures by the
method of Jeong & Hussain (1995) (figure 7b) are plotted at Pr = 7, Ri = 0.1 and
Re =400. The wake presents a characteristic vortex street with alternate vortices of
opposite axial vorticity sign.
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(a) (b)

Figure 7. Snapshots of the flow pattern at two instants differing by a half of a period
at Ri = 0.1, Re = 400 and Pr = 7. (a) Isosurfaces of axial vorticity at the levels ωx = ±0.1.
(b) Vortical structures – the Q-definition (see Jeong & Hussain 1995) – at the level Q = 0.001.
The flow presents a vortex street of alternate vortices, the symmetry plane being that of the
three-dimensional steady regime.

Pr Ri Re St Pr Ri Re St Pr Ri Re St

0.72 0 300 0.135 0.72 0.2 850 0.218 0.72 0.55 1000 7.26 × 10−3

0.72 0 350 0.130 0.72 0.4 1000 0.058 0.72 0.58 1200 0.038
0.72 0.1 400 0.163 0.72 0.4 1050 0.060 0.72 0.58 1300 0.043
0.72 0.1 450 0.167 0.72 0.4 1000 0.058 0.72 0.6 1200 0.037
0.72 0.1 500 0.168 0.72 0.4 1050 0.060 0.72 0.6 1300 0.044
0.72 0.1 550 0.164 0.72 0.4 1100 0.059 7 0 300 0.135
0.72 0.2 600 0.201 0.72 0.4 1200 0.058 7 0 350 0.130
0.72 0.2 650 0.202 0.72 0.5 1000 7.98 ×10−3 7 0.1 400 0.149
0.72 0.2 700 0.206 0.72 0.5 1100 8.02 ×10−3 7 0.1 450 0.149
0.72 0.2 750 0.207 0.72 0.5 1200 8.19 ×10−3 7 0.1 500 0.141
0.72 0.2 800 0.208 0.72 0.5 1300 8.35 ×10−3 7 0.2 600 0.169

Table 4. Assisting flow: Strouhal numbers for all periodic and quasi-periodic (shown
in bold) regimes evidenced at both Prandtl numbers.

The value of Strouhal number is defined as

St =
f d

u∞
, (6.1)

where f is the frequency of the periodic wake oscillations. It increases with Re
at constant Ri and Pr and, similarly, it increases with Ri at constant Re and Pr .
At constant Ri and Re, the Strouhal number decreases with Pr . Tables 4 and 5
sum up Strouhal numbers for all periodic and quasi-periodic (with the frequency
corresponding to the highest peak in the frequency spectrum being given) regimes
evidenced. Note that for a non-heated sphere, the Strouhal number at the onset of
the Hopf bifurcation at Re2 = 272 is St = 0.127 (see Johnson & Patel 1999; Bouchet
et al. 2006). In what follows we understand the Strouhal number as any frequency
f non-dimensionalized using (6.1); i.e. we refer to (6.1) even for regimes presenting
oscillations without vortex shedding.

A truncation of the azimuthal decomposition to m =0 and m =1 modes affects only
very weakly the found solution. The latter remains oscillating with only a slightly
smaller amplitude and a slightly greater mean value of the lift. The essential dynamics
are thus related to the m =1 subspace. The higher modes play merely the role of
slave modes.
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Pr Ri Re St Pr Ri Re St Pr Ri Re St

0.72 0 300 0.135 0.72 −0.11 210 9.33 ×10−2 7 0 300 0.135
0.72 −0.03 290 0.126 0.72 −0.12 185 8.82 ×10−2 7 −0.05 240 0.119
0.72 −0.05 240 0.115 0.72 −0.12 200 9.05 ×10−2 7 −0.05 270 0.127
0.72 −0.05 270 0.119 0.72 −0.13 175 8.48 ×10−2 7 −0.1 210 0.105
0.72 −0.05 290 0.115 0.72 −0.13 185 8.77 ×10−2 7 −0.1 230 0.113
0.72 −0.07 250 0.109 0.72 −0.13 200 8.96 ×10−2 7 −0.11 220 0.108
0.72 −0.07 260 0.107 0.72 −0.15 170 8.40 ×10−2 7 −0.11 230 0.112
0.72 −0.08 240 0.106 0.72 −0.2 140 7.90 ×10−2 7 −0.15 175 9.38 ×10−2

0.72 −0.09 212 0.102 0.72 −0.2 170 7.98 ×10−2 7 −0.15 190 0.100
0.72 −0.09 220 0.103 0.72 −0.2 190 9.37 ×10−2 7 −0.17 190 9.69 ×10−2

0.72 −0.09 230 0.102 0.72 −0.23 170 9.17 ×10−2 7 −0.2 150 8.90 ×10−2

0.72 −0.1 200 9.41 ×10−2 0.72 −0.25 100 6.84 ×10−2 7 −0.2 170 9.47 ×10−2

0.72 −0.1 210 9.83 ×10−2 0.72 −0.25 125 7.99 ×10−2 7 −0.2 180 9.54 ×10−2

0.72 −0.11 200 9.33 ×10−2 0.72 −0.25 150 8.79 ×10−2 7 −0.25 125 8.43 ×10−2

7 −0.25 150 9.22 ×10−2

Table 5. Opposing flow: Strouhal numbers for all periodic regimes at both Prandtl numbers.
The Strouhal numbers of quasi-periodic planar and three-dimensional regimes are close to the
values of periodic regimes situated in the vicinity of the quasi-periodic regimes in the Ri–Re
diagram of figure 4.

The convection (increasing Richardson number) tends, at first, not only to push
the Hopf bifurcation threshold to higher Reynolds numbers but also to widen the
interval of the limit cycle stability until the existence of the regime is abruptly cut off
at Ri = 0.3.

6.3. Quasi-periodic flow with planar symmetry, vortex shedding
and non-zero mean lift (III)

The periodic vortex shedding evidenced for Ri < 0.3 at both considered Prandtl
numbers was systematically found to undergo a second Hopf bifurcation bringing
about a second, incommensurate, frequency and yielding limit torus dynamics. (At
Pr = 7, the parameter domain did not extend high enough to evidence the quasi-
periodic regime at Ri = 0.2.) The symmetry plane remains conserved. Figure 8 shows
the time evolution of the lift coefficient and its frequency spectrum at Ri =0.1,
Re =500 and Pr = 7. Figure 9 shows the corresponding flow aspect. (For this
simulation, the computational domain was extended downstream to Lout/d = 60 to
represent the largest length scale of the flow within the computation domain.) Note
the local vortex street extinction at x/d ≈ 25 downstream of the sphere. This extinction
is a fingerprint of the lift extinction occurring with a periodicity of 50 time units in
figure 8(a).

7. Three-dimensional regimes specific for assisting flow
The investigation of the Pr = 7 plane was too limited to reveal ordered regimes

specific for assisting flow (distinct from those described in § 6). The following
description concerns thus only the case of Pr = 0.72, although a similar behaviour
can be conjectured in the Pr = 7 case.

7.1. Steady three-dimensional flows

As we already mentioned, with increasing Richardson number, we observe three
distinct cases depending on the azimuthal subspace in which the primary instability
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Figure 8. (a) Time evolution of the lift coefficient of quasi-periodic oscillations at Ri = 0.1,
Re = 500 and Pr =7; (b) the corresponding power spectrum. The dominant Strouhal number
is 0.141; the most important sub-harmonic frequency corresponds to the Strouhal number
St = 0.041.
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Figure 9. Isosurfaces of axial vorticity at the levels ωx = ±0.02 viewed along (up) and
perpendicular to (bottom) the symmetry plane at Ri = 0.1, Re = 500 and Pr = 7. The symmetry
plane is conserved, but the vortex shedding presents extinctions that can be associated with
lift oscillation extinctions visible in figure 8(a).

sets. Farther inside the three-dimensional domain (above the primary-instability line)
several azimuthal modes are significant, and the distinction between cases when one of
them is dominant becomes very rapidly unclear. The regime with two vortex threads
was described in § 6.1

7.1.1. Steady flow with four vorticity threads and two perpendicular
symmetry planes (IV)

If the wavenumber of the most unstable azimuthal mode at the threshold of the loss
of axisymmetry is m =2 (for 0.590 � Ri � 0.714 at Pr = 0.72) the flow pattern presents
four steady vorticity threads and two perpendicular symmetry planes. At Pr =0.72,
the limits of this type of instability expressed in terms of Richardson numbers were
found to be 0.590 � Ri � 0.714. The flow has a period of π in the azimuthal direction,
and the resulting lift is thus zero because it integrates only effects of the m =1 mode
(see Jenny & Dušek 2004). The aspect of the flow with four vorticity threads is shown
in figure 6(b) for Ri =0.6, Re = 1100 and Pr = 0.72. The unstable mode is very weak,
and, though very well representable in terms of axial vorticity, it is not visible on a
plot of a temperature isosurface.
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(a) (b)

Figure 10. Isosurfaces of axial vorticity at Pr = 0.72. (a) Ri = 0.2 and Re = 400; ωx = ±0.01.
(b) Ri = 0.3 and Re = 1000; ωx = ±0.01.

7.1.2. Steady flow with six vorticity threads and three symmetry planes (V)

The instability in the m =3 subspace, occurring for Ri � 0.714 at Pr =0.72, yields
a flow pattern presenting six steady vorticity threads and three symmetry planes. The
subdomains dominated by m =2 and m =3 modes extend rather parallel to the Ri
axis. When the domain was swept in the Re-axis direction (at constant values of Ri )
the m = 2 mode was observed to give way, at a higher Reynolds number, to the m =3
mode.

The flow being periodic with the periodicity of 2π/3 in the azimuthal direction, the
resulting lift is again zero. The aspect of the flow with six vorticity threads is shown
in figure 6(c) at Pr = 0.72, Ri =0.7 and Re = 1300.

7.1.3. Strongly supercritical steady non-axisymmetric regimes

The regimes concerned by the present subsection resemble qualitatively those
described in § 6.1. The lift is non-zero and constant; two counter-rotating vortices
dominate the wake, in spite of two or four strong secondary vortex pairs. Most
intriguing is rather the fact that at Ri =0.3 and Ri =0.45 no unsteady regime was
found until the onset of chaos.

The regimes represented in figure 6 are prototypical monomodal states in which
the visible mode is accompanied only by its higher harmonics. For example the flow
at Ri = 0.6 and Re = 1100 contains absolutely no odd modes; only the mode m =2
and its multiples are present. Similarly, the flow represented in figure 6(a) contains
only weak higher harmonics that have no dynamics of their own and are sustained
by the fundamental unstable mode via nonlinear couplings. Even represented by
isovorticity surfaces at a much lower level (see figure 10a) the m > 1 modes remain
invisible. On the contrary, highly supercritical flows contain clearly several vortex
tubes (figure 10b).

What complicates the understanding of highly supercritical, albeit steady, regimes
is the fact that there is no clear manner to distinguish pure higher harmonics of
an unstable mode in the m =1 subspace from interactions with (nearly) unstable
modes in m > 1 subspaces. The only case in which this interaction can clearly be
evidenced is when a flow containing only multiples of a given m > 1 mode undergoes
a (spatial) subcritical bifurcation triggering the missing modes. This happens e.g. when,
at Ri = 0.6, the Reynolds number is increased from 1100 to 1200 or, at Re = 1300,
when the Richardson number is decreased from 0.65 to 0.6. In both cases the onset
of lower azimuthal wavenumbers is accompanied by an onset of oscillations. If e.g.
at Ri = 0.6 and Re = 1200, we do not include odd modes into the azimuthal Fourier
decomposition the oscillations do not appear.
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To investigate more closely these couplings we carried out several numerical
experiments consisting of keeping only even modes in the azimuthal decomposition
(case 1) on one hand and only m =0, 1 modes (case 2) on the other hand. In both
cases the reduced equations remain nonlinear. In the first case only perturbations
driven by the m =2 subspace (and their higher harmonics) are present; in the latter
case, only the m =1 perturbations are allowed. The test was applied to the following
points of the Ri–Re plane: (0.2, 550), (0.3, 500), (0.3, 1000) and (0.45, 1300); the test
was applied as well to points corresponding the three unsteady regimes: (0.2, 700),
(0.4, 1050) and (0.5, 1100).

The steady non-axisymmetric regimes for Ri = 0.2, Re = 550 and Ri = 0.3, Re =500
disappear if only even modes are retained in the azimuthal decomposition and are
only weakly affected by the truncation to m = 0, 1. They correspond well to the steady
non-axisymmetric regime in the m =1 subspace of § 6.1. The stability of the steady
non-axisymmetric regimes at high Reynolds numbers at Ri =0.45 is explained by an
equilibrium of instabilities in subspaces m =1 and m = 2 because if only even modes
are retained, a periodic oscillating regime with a plane of symmetry results this time
in the m =2 subspace (i.e. with zero mean lift – see § 7.2.1), whereas if the azimuthal
decomposition is truncated at m = 1 a periodic regime without symmetry plane (with
lift oscillation perpendicular to mean lift direction) is found. As for the absence of
periodic oscillations at Ri = 0.3, the test shows that the regime is unaffected by the
presence of even modes. The steady non-axisymmetric regime in the m =1 subspace
is exceptionally stable by itself. The nonlinear coupling inhibits the already-existing
oscillations in the m =2 subspace.

7.2. Periodic regimes with planar symmetry

The periodic regimes with planar symmetry were found to be also of three distinct
types depending on the primary azimuthal subspace. The limit of the vortex shedding
typical for the unheated sphere is materialized by the Ri = 0.3 line at which the
oscillations disappear. At this Richardson number the steady regime, stable until
Re = 1000, becomes directly chaotic at Re = 1100. The other two ‘islands’ of periodic
states with planar symmetry were found at Ri = 0.4 and Ri = 0.58 and 0.6. They
present significantly different characteristics.

7.2.1. Slow periodic oscillation of two vortex threads (VI)

The major distinctive feature of the periodic oscillations of the bifid wake at Ri = 0.4
(and at Pr = 0.72) is that the flow pattern does not exhibit the alternate vortices and
that the period of the oscillations is almost four times longer as compared to the
regime described in the previous subsection. The flow pattern is illustrated in figure 11.
Two snapshots of the flow at two instants differing by a half period are represented.
The isosurfaces of axial vorticity (figure 11a, b) represent vortex tubes exhibiting only
a barely visible undulation. The amplitude (denoted CL,a – note that the compared
regimes are perfectly periodic) of the lift coefficient is about twice smaller than at
Ri = 0.2, Re = 700 ( CL,a = 5.8 × 10−3 at Ri = 0.4, Re = 1000 against CL,a = 9.3 × 10−3

at Ri = 0.2, Re = 700). Also the mean lift is smaller (CL,m =3.3 × 10−2 at Ri = 0.4,
Re = 1000 against CL,m = 4.8×10−2 at Ri = 0.2, Re = 700). The Strouhal numbers are
much smaller than for the regimes with shed vortices (see table 4).

Another important feature is the presence of two relatively strong (note the
level of the vorticity isosurfaces of the figure) secondary vortex tubes (four tubes
altogether) witnessing a strong m =2 mode. The numerical test presented in § 7.1
yields, surprisingly, a steady axisymmetric solution if only even modes are retained.
If the azimuthal expansion is truncated only to m =0, 1, surprisingly again, the
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(a) (b)

Figure 11. Isosurfaces of the axial vorticity at the levels ωx = ±0.3 at two instants differing by
a half of a period, Ri = 0.4, Re = 1000 and Pr = 0.72 (VI). The two threads oscillate with a low
amplitude, and the vortical structures no longer change sign periodically in the downstream
direction – no vortex shedding is present in the flow.

(a) (b)

Figure 12. Isosurfaces of the axial vorticity at the levels ωx = ±0.02 at two instants differing
by a half of a period of the flow at Ri = 0.6, Re = 1200 and Pr = 0.72 (VII). The four threads
oscillate parallel to one and perpendicularly to the other of the symmetry planes established
in the steady regime.

slowly rotating regime (IX) described in § 7.3.1 is obtained. Even if the regimes
obtained in the test were unexpected the result of the tests confirms the expectation
that the interaction of both subspaces m =1 and m =2 is necessary to sustain the
oscillations. The mode m =1 remains, however, still dominant. In contrast to the
vortex shedding described in the previous subsection, the resulting Hopf bifurcation
has to be understood as resulting from a fully nonlinear and three-dimensional state
of the flow without direct relation to any of the eigenvalues of the axisymmetric flow.

7.2.2. Quasi-periodic flow with planar symmetry without vortex shedding (VIII)

This flow regime is the next transition stage of the periodic regime described in
§ 7.2.1 in the same way as the quasi-periodic regime III is related to regime II. The
flow aspect is very similar to that of figure 11. The undulation of the vortex threads
is significantly stronger, but alternate vortex shedding is absent. The common feature
of the quasi-periodic regimes is that the dominant frequency remains that of the
associated periodic flow. In this case the secondary Strouhal number is about three
times smaller as compared to that of the related periodic regime.

7.2.3. Slow periodic oscillations of four vortex threads with a plane of symmetry (VII)

Unlike in the previous case (Ri = 0.4), the two periodic regimes evidenced at
Re =1200 and Ri = 0.58 and 0.6 present a zero mean lift. The lift is, nevertheless,
non-zero and oscillates about the zero mean value in one of the two symmetry planes
established at the primary instability, which sets in the m = 2 subspace. A pair of the
vortex threads becomes alternately stronger than the other during a period of
oscillations; both remain equal in the average (see figure 12). The numerical test of
§ 7.1 shows that the oscillations disappear in the absence of odd modes. A truncation
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Figure 13. (a) Projection of the lift coefficient onto the plane perpendicular to flow axis at
Pr = 0.72, Ri =0.5 and Re = 1100 (IX). (b) Isosurfaces of axial vorticity at the levels ωx = ±0.2.
Note the twisted vortex threads resulting from the rotation of the symmetry plane.

to m =0, 1, 2 modes leaves the oscillations unaffected. This means that the mode
m =2 is dominant but that the interaction of m = 1, m =2 subspaces is necessary to
sustain the oscillations. The interaction with the m =3 subspace has negligible effects.
The amplitude of the lift coefficient was found to be 6.4 × 10−3 and the Strouhal
number 0.037 at Re = 1200 and Ri =0.6.

7.3. Ordered states without symmetry plane

Higher order nonlinear effects tend to break the remaining symmetry plane. This
change is very rapid in terms of the Reynolds number variation for low Richardson
numbers and is perceived as a direct transition to chaos with the coarse Reynolds
number step of diagram 2. At Pr = 0.72, many, more or less ordered, regimes were
obtained at values of Ri greater than or equal to 0.4. Namely, at Ri = 0.5 and
Ri = 0.55, an intriguing periodic slow rotation of the vorticity threads around the
flow axis was found for Reynolds numbers ranging from 1000 to 1300. A different
periodic rotating regime, dominated by an m =3 mode was found at Ri = 0.58 and
Ri = 0.6 at Re = 1300. All other regimes have more or less complicated non-periodic
dynamics preceding very likely a transition to full chaos.

7.3.1. Two slowly rotating vorticity threads (IX)

At Pr = 0.72, Ri = 0.5 and for 1000 � Re � 1300 and at Ri = 0.55 and for
Re = 1000, the steady vorticity threads were observed to form a slowly turning
spiral corresponding to a slow rotation of the initial symmetry plane. As a result, the
projection of the lift coefficient onto the plane perpendicular to the flow axis has the
form of a circle (see figure 13a). The circle is perfect at its onset at Re = 1000 – with
no higher harmonics in the time behaviour. Later on, at Re = 1200, the dynamics of
the flow begin to be modulated by higher harmonics. The Strouhal number at this
regime is extremely low (see table 4); the period is 25 times longer than that of the
regime with vortex shedding and 6 times longer than the periodic regime described in
§ 7.2.1. For a long time we had no reasonable explanation of the origin of this regime.
A hint is now provided by the test carried out at Ri = 0.4 and Re =1050 mentioned
in § 7.2.1. The rotation obtained with the azimuthal expansion truncated to m =0, 1
presents exactly the same characteristics as the regime presented in figure 13. This
means that the slowly rotating regime originates essentially in the m = 1 subspace.
The stabilizing effect of convection prevents the vortex shedding from setting in. This
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extends the stability of the steady non-axisymmetric regime to Reynolds numbers
exceeding 1000 (see figure 4). The convection acts mostly in the close wake. The far
wake is less stable, and its symmetry plane ends up turning slowly. The role of the
coupling between m =1, 2 consists of delaying the onset of the regime to a higher
Richardson number.

7.3.2. Periodic regime dominated by m = 3 mode with rotating lift (X)

This regime, observed at Re = 1300 and Ri = 0.58, 0.6 (at Pr = 0.72) can be viewed
as arising from the periodic regime described in § 7.2.3 destabilized by a coupling with
the m = 3 subspace. The resulting three-dimensional pattern presents six vorticity
threads of different intensity. When represented as a movie, the threads do not rotate,
unlike in § 7.3.1. Their intensity appears only to be modulated with the period of the
flow. Nevertheless, the lift rotates with a Strouhal number St =0.044, which can be
considered a continuation of the value given in § 7.2.3.

7.3.3. Non-periodic rotating regimes (at Pr =0.72) (XI)

These regimes represent the ultimate stage before the transition to chaos. We
discriminate them from chaotic states by the absence of chaotic structures in the
wake (resolved in the simulation, i.e. up to 25 diameters downstream of the sphere)
and by a quasi-periodic time evolution of the lift coefficient. Their common feature
consists in presenting several regular vorticity threads. (The number of dominant
threads is indicated by different shading in figure 2.) Their dynamics correspond to
the transition from the closest more ordered regime to chaos. That is where a symmetry
plane is present it gets lost; where a periodicity is present, more complicated, possibly
quasi-periodic, dynamics set in. For example the regime at Ri =0.4 and Re = 1300
(figure 14a) differs from that at Ri = 0.4 and Re = 1200 because of the loss of stability
of the symmetry plane resulting in slowly rotating quasi-periodic oscillations of the
lift. The regimes in figure 14 (b–d) arise from a flow already without a symmetry
plane but are characterized by the loss of periodicity.

7.4. Chaotic flow (XII)

‘Chaotic flow’ is not necessary synonymous with ‘turbulent flow’. Note that chaos is
widely accepted to arise in dynamical systems as a result of a single or of a rapidly
converging sequence of bifurcations (e.g Strogatz 1994); it has thus a ‘threshold’, and
unlike a ‘developed turbulent flow’, a chaotic flow just above its threshold cannot
be expected to develop suddenly a turbulent energy spectrum. In the present case,
chaotic behaviour is rather related to very long time scales. There exist mathematically
well-defined criteria of chaos such as the Lyapunov exponents and the Hausdorff
dimension of the strange attractor. Their practical applicability is, however, very
limited. Therefore we do not claim to prove rigorously that the states described in the
present sections are ‘chaotic’ in mathematical sense. As will be seen, they lack any
spatial or temporal periodicity.

A chaotic flow presents both chaotic structures in the wake and a chaotic projection
of the lift onto a plane perpendicular to the flow direction (figure 15). The computing
costs needed to investigate an established chaotic behaviour close to its onset are
high. For example the simulation at Pr =0.72, Ri = 0.2 and Re = 900 in figure 16(a)
corresponds to 160 periods of vortex shedding in the corresponding periodic regime
(at Re � 500). In spite of that, the chaotic behaviour of all regimes XIV has been
thoroughly checked. It might rather happen that some of the regimes considered
‘ordered’ in § 7.3.3 end up becoming chaotic. The thermal plume shifts, very likely, the
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Figure 14. Projection of the lift coefficient onto the plane perpendicular to flow axis at
Pr = 0.72 and (a) Ri = 0.4,Re = 1300; (b) Ri = 0.55,Re = 1300; (c) Ri = 0.5,Re = 1400; and
(d ) Ri = 0.6,Re =1400 (regimes numbered XI).
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Figure 15. (a) Projection of the lift coefficient onto the plane perpendicular to flow axis;
(b) axial vorticity at the levels ωx = ±0.2; and (c) vortical structures at the level Q = 0.001 at
Pr = 0.72, Ri = 0.1 and Re = 1000 (XII). At this Richardson number the threshold of chaos
lies at Re =600.
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Figure 16. Pr = 0.72, Ri = 02, Re = 900. (a) Projection of the lift coefficient onto the plane
perpendicular to flow axis. (b) Isosurfaces of axial vorticity at levels ±0.15.

chaotic regime outside the investigated parameter domain, so that any clear chaos
for Ri > 0.3 is not evidenced.

8. Three-dimensional transitional regimes specific for opposing flow
The Ri–Re parameter planes at Pr = 0.72 and Pr =7 were scanned, again, mainly

along lines in the increasing Re direction as can be seen in figure 4. Depending on the
complexity of the distribution of different regimes the density of investigated points
was varied. The approximate limits of subdomains corresponding to the regimes
described below are represented by thin lines in figure 4. The points at which the
regimes have been identified are marked by symbols described in the caption of the
figure. In the direction of increasing Reynolds numbers we stopped the investigation at
the onset of chaos. Due to the destabilizing effect of an increasingly strong convection,
the upper bound for the threshold of onset of chaos is given by that of the unheated
sphere situated close to Re ≈ 400. The Reynolds number Re =350 was sufficiently
high to evidence chaos at the smallest (in absolute value), but non-zero, considered
Richardson number. On the left-hand side of the parameter planes we stopped our
investigation at Ri = −0.25 (with some excursions down to Ri = −0.5 at Pr = 7).
At Ri = −0.25, the primary-instability threshold drops to Recrit,1 ∼ 100. For both
considered Prandtl numbers, the scenario of transition seems to be similar at higher
(more negative) Richardson numbers. The interest of pushing the investigation further
left, to more negative Richardson numbers, consists rather in the investigation of the
flow reversal due to a dominant convection. At a very low Reynolds number (smaller
than 1) this phenomenon raised the problem of a huge recirculation observed by
Mograbi & Bar-Ziv (2005a). It is clear that at Reynolds numbers greater than 1, the
flow reversal will occur in a chaotic and fully three-dimensional flow. The presentation
of the result of investigation of this phenomenon goes, however, beyond the scope
of this paper. Let us just remark that the reverse plume bringing about a change of
the drag sign occurs at Richardson numbers exceeding 1 in absolute value, which lie
beyond the limits of the parameter planes presented in figure 4.

The transition scenario in opposing flow is different from that of assisting flow
because of the primary bifurcation of Hopf type. This fact has made it necessary to
distinguish several more regimes in addition to those already described above (see
figure 4). As has already been pointed out, the transition in opposing flow is driven
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Figure 17. Upper figures: paths of lift coefficient; (a) Ri = −0.1 and Re = 220; (b) Ri = −0.08
and Re = 260. Lower figures: axial isovorticity surfaces at ωx = ±0.2; (c) Ri = −0.08 and
Re = 250; (d) Ri = −0.08 and Re = 260. The view is taken along the local symmetry plane in
the remote wake to show the helical distortion in the near wake (regimes XIII).

by the m =1 azimuthal subspace. The dynamics of the m = 1 subspace being perfectly
represented by the lift, we use mainly the lift coefficient vector (5.1) to characterize
the different regimes. The lift coefficient plots are illustrated in some cases by the
three-dimensional vorticity plots representing the vorticity structures in the wake.

8.1. Low Richardson numbers

In this subsection we focus on specific ordered regimes that appear before the
originally periodic flow with planar symmetry and non-zero mean lift (II) becomes
chaotic.

8.1.1. Oscillating regime without symmetry plane and slowly rotating
mean lift (XIII) at Pr = 0.72

Opposing flow is characteristic for its earlier loss of planar symmetry as compared
to an unheated sphere wake. At the moderate Prandtl number Pr = 0.72, the symmetry
plane looses easily its stability, and higher order effects set in before the dynamics
of the second eigenpair start to be visible. At Prandtl number Pr = 7, the planar
symmetry appears to be much more robust, and the quasi-periodic regime with
planar symmetry and non-zero mean lift exists along the whole upper limit of the
periodic regime.

The most ordered regime mixes one pair of helical modes with the steady eigenmode
responsible for the non-zero mean lift. The non-zero helicity, appearing as a spiralling
path of the lift coefficient, is due to a non-perfect equilibrium of the helical modes
associated with the complex eigenpair, which is at the origin of the periodic regime
with planar symmetry (II). The loss of symmetry with respect to the change of the
helicity sign was explained in Danaila, Dušek & Anselmet (1998) by higher nonlinear
effects. This regime is relatively hard to find because it is confined to a very narrow
strip along the upper limit of the subdomain corresponding to the periodic regime
(II). Three cases, at Ri = −0.07 and Re = 270, at Ri = −0.08 and Re = 250 and at
Ri = −0.1 and Re = 220 have been evidenced (see figure 17a). In the diagram in
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(a) (b)

Figure 18. Periodic vortex shedding with zero mean lift (a) at Pr =0.72, Ri = −0.25 and
Re = 125 and (b) at Pr = 7, Ri = −0.2 and Re = 150, represented in terms of axial isovorticity
surfaces at (a) ωx = ±0.3 and (b) ωx = ±0.1 (regimes XIV).

figure 4 they are represented by a filled circle. Elsewhere (small filled circle inside
a larger one) in figure 4) a secondary frequency is present (see figure 17b). The
three-dimensional plots show clearly the absence of the symmetry plane due to the
helical torsion of the wake structures (figure 17c, d).

8.2. Higher Richardson numbers

At Pr = 0.72 and Richardson numbers below −0.2 the transition scenario no longer
qualitatively varies with the Richardson number value. A similar trend was observed
at Ri ∼ −0.5 and Pr =7. Here we describe in detail what happens if the line Ri = −0.2
is swept at Pr = 0.72.

The primary Hopf bifurcation yields a periodic wake with vortex shedding keeping
a symmetry plane and to the difference of the regime numbered II, with a zero mean
lift. The different nature of the primary bifurcation completely modifies the transition
scenario.

8.2.1. Periodic vortex shedding with symmetry plane and zero mean lift (XIV)

In the parameter subdomain touching the line corresponding to the rapid primary
bifurcation of Hopf type, the real eigenvalue (or the slow complex eigenpair) no
longer influences the wake dynamics. Because, in the asymptotic regime, both helical
modes have the same amplitude the wake assumes a symmetry plane determined
arbitrarily by initial conditions. The regular mode is absent; there is thus no mean
shift of the wake off the flow axis as was the case in the regime II. The mean lift
is therefore zero. Two examples of wake structure are given in figure 18. The found
Strouhal number values are given in table 5. Overall, the Strouhal number varies only
very weakly. It was close to 0.1 at both considered Prandtl numbers in the periodic
regime with non-zero mean lift, and it is now close to 0.08 in the present case.

8.2.2. Rotating vortex shedding with zero mean lift (XV) – Pr = 0.72

At Pr = 0.72 a detailed scenario of transition from the periodic vortex shedding
(XIV) to chaos is illustrated in figure 19, where the evolution of the lift path depending
on Re is represented at Ri = −0.2 (see also the diagram in figure 4). At Pr = 7, the
direct transition from the periodic vortex shedding to a rotating regime and a later
onset of chaos was observed at Ri = −0.5. As the Reynolds number increases, the
paths of the lift coefficient plotted in the (Cy, Cz) plane evolve from a slowly rotating
regime with non-zero helicity representing the zero lift counterpart of regime (XIII)
at Re = 200 to a path very slightly modulated by a secondary frequency at Re = 210.
(The rotating ellipse is very flat and turns slowly so that the plot fills completely the
central part of the figure.) The monoperiodic regime (apart from the period of the
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Figure 19. Pr = 0.72, Ri = −0.2: paths of lift coefficient in the plane normal to the flow axis
for Reynolds number values indicated above the figures (regimes XV).

turning) is denoted by a filled square in figure 4. All other more or less modulated but
still ordered regimes are marked as small filled squares inside larger square frames.
In the next stage (third figure on the first line in figure 19) the ellipse, described at
the basic Strouhal number of ∼0.1, oscillates instead of turning in the same direction.
At Re = 230 (first figure on the second line of figure 19), the rotation is back. The
last two figures corresponding to Re = 250 and Re =270 present a more entangled
aspect. At first glance, there is no clear reason why one of them should be qualified
as still ordered and the other one as chaotic.

To decide where to set the start of the chaotic regime we investigated the large
time scales of the regimes. In figure 20, the first line of figures represents the ‘time
signals’ of the y-axis projection of the lift coefficient (Cy), and the second line
represents the corresponding Fourier transforms. The leftmost regime (at Re = 200)
helps us to interpret the Fourier transform. The motion is governed by two principal
frequencies, that of the oscillation along a single ellipse (corresponding to the highest
peak of the Fourier transform, here almost exactly St = 0.1) and that of the ellipse
rotation corresponding to about 500 non-dimensional time units, i.e. to St = 0.002
(corresponding to the distance of the peaks). At Re = 250 (middle column) the highest
peak is situated at St = 0.104, and there is a great number of secondary peaks, the
interval between which (St ≈ 0.006) represents, again, the inverse of the period of
rotation of the lift coefficient visible in the upper figure as an ‘extinction’ of the
‘signal’ corresponding to the instant at which the rotating ellipse (second to last one
in figure 19) has a vertical orientation. (In the corresponding plot of figure 19 only one
incomplete rotation period for t > 900 is represented.) There are two such ‘extinctions’
visible at e.g. t ≈ 730 and t ≈ 900 in the upper middle plot of figure 20. What changes
considerably between Re = 250 and Re = 270 is the number of secondary peaks
related to the ‘signal’ modulation. As long as all the secondary peaks are sharp and
equally spaced we can consider the power spectrum to be characteristic of quasi-
periodic, if not periodic, dynamics. At Re = 270 the low-frequency interval (St < 0.05)
of the power spectrum is clearly no longer composed of discrete peaks. This can be
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Figure 20. Pr = 0.72, Ri = −0.2: y-axis projection of the lift coefficient versus time at
Re = 200, 250, 270 (upper figures from left to right) and the corresponding power spectra
(absolute values of Fourier transforms).

(a) (b)

Figure 21. Wake structure at Pr = 0.72, Ri = −0.2 and (a) Re =200, (b) Re = 270
represented in terms of isovorticity surfaces at ωx = ±0.3 in both cases.

explained by an absence of repetition of the patterns corresponding to one rotation
with period t ≈ 170 in the upper right of figure 20. It is seen that a clear proof of the
chaotic nature of the regime is costly in terms of simulation time and that the onset
of chaos is rather progressive. Nevertheless, with some error margin, chaos can be
considered to occur between Re = 250 and Re = 270 at this Richardson and Prandtl
numbers. The chaotic nature of the regime originates in the loss of periodicity on a
very large time scale. Therefore there is nothing special that distinguishes the lift path
at Re = 270 from that at Re = 250 (see the last figure in figure 19 corresponding to a
trajectory in the interval t ∈ [1250, 1330], i.e. for one rotation).

Represented in three dimensions, the flow pattern at Re = 200 is not distinguishable
from that at Re = 190 corresponding to a periodic regime. This is easily under-
standable because the net helicity (measured by the aspect ratio of the rotating ellipse
in the first plot of figure 19) is very small. The wake seems thus to keep its symmetry
plane in figure 21(a). Nevertheless, a movie we set up from 200 snapshots over a
rotation period is quite spectacular because it shows how the symmetry plane rotates.
At Re =270 (figure 21b) the helicity is already well developed, and there is no rest
of planar symmetry visible. Small secondary structures start also to appear in the far
wake in spite of a relatively high level of the vorticity set to represent them, ωx = ±0.3.
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Figure 22. Lift paths (upper figures) and wake structure (lower figures) at Pr = 0.72. Left
figures: Ri = −0.03 and Re = 340; right figures: Ri = −0.2, Re = 300. The level of axial vorticity
surfaces is ωx = ±0.1 in the left figure and ωx = ±0.3 in the right figure. The mean lift is
practically zero. (The ratio of the mean lift to r.m.s. of its fluctuations in the upper right plot
is 1.6 %.)

To sum up, at higher Richardson numbers, the route to chaos starts from a periodic
oscillating regime with zero mean lift and a symmetry plane. The latter gets lost due
to a slow wake rotation. This rotation becomes more rapid, and a quasi-periodic
modulation appears within it. Eventually, the dynamics end up losing any periodicity
at very large time scales. At Pr = 7 we found a similar progression while sweeping
along the Ri = −0.5 line. At both Pr = 0.72 and Pr =7, a similar scenario was also
found along the Re = 100 line by increasing the absolute value of the Richardson
number from 0.25 to more than 1.

8.3. Chaotic regimes (XII)

In opposing flow chaos sets in much earlier than in assisting flow, therefore the
flow pattern does not present so fine structures. Nevertheless, the flow is completely
disordered. In figure 22 we present two examples of lift paths and wake structures at
Pr = 0.72 at opposite ends of the investigated interval of Richardson numbers. In spite
of the fact that the closest ordered regimes are qualitatively significantly different,
the lift paths and the flow aspects are in all four cases similar: no symmetry left,
(approximately) zero average lift, presence of helical structures. Only at the closest
glance there subsists some fingerprint of the closest ordered regime. The almost
horizontal oscillations of the lift coefficient at Pr = 0.72, Ri = 0.03 and Re =340
(upper left of figure 22) are not due to a poorly converged simulation started from
the closest regime with planar symmetry but due to an intermittent state reached
after the lift coefficient described most of the chaotic entanglement visible in the plot.

8.4. Intermediate transition zone

Several interesting phenomena can be observed at the junction of the primary regular
and Hopf bifurcation thresholds. At Pr = 0.72, it is interesting to note that the
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Figure 23. Simulation at Pr = 7, Ri = −0.13 and Re =180 (XVI), starting from a slowly
rotating, rapidly oscillating helical wake (Ri = −0.13, Re = 190).

vortex shedding with zero mean lift (XIV) penetrates rather deeply into the domain
dominated otherwise by the regular bifurcation. Otherwise stated, if, at a Richardson
number Ri > −0.13 (say at Ri = −0.12), the Reynolds number is increased from the
regular-bifurcation threshold upward, the wake crosses the usual two early transition
stages (steady non-axisymmetric wake (I) and periodic vortex shedding with non-zero
mean lift (II)), but then the mean lift disappears, and the regime numbered XIV,
characteristic of more negative Richardson numbers, sets in. The interpretation of
this can be, in agreement with the observation made already for an unheated sphere
(Ri =0), that the coupling of the subspace associated with the real eigenvalue and
that associated with the complex eigenpair tends to enhance the amplitude of the
helical modes and reduce that of the steady one. For an unheated sphere (Ri = 0),
this type of coupling explains why the secondary Hopf bifurcation sets in earlier than
predicted by the linear analysis of the axisymmetric base flow. Close to the point
at which the primary bifurcation type changes, the coupling ends up stabilizing the
steady subspace, and only the oscillating modes subsist. The next stage, a quasi-
periodic vortex shedding, is described below. It is found to exist at both investigated
Prandtl numbers though not in the same Ri–Re domains.

At Pr = 7 the junction of the regular and the (rapid) Hopf bifurcations is marked
by the presence of a new, slow Hopf bifurcation. As has been pointed out in § 4 the
slow primary Hopf bifurcation represents the continuation of the regular one after
collision of the two least stable real eigenvalues. The new complex eigenpair has very
small imaginary parts corresponding to a Strouhal number of less than 0.003, i.e. to
oscillations with a period exceeding 300 time units (see table 3). Although the pure
slowly oscillating periodic regime associated with this eigenpair is stable only within a
narrow zone along the primary-instability threshold it leaves a fingerprint in a much
larger zone.

8.4.1. Primary slow Hopf type regime (XVI) (Pr = 7)

The proof of stability of this regime is provided in figure 23 at Ri = −0.13 and
Re =180. To investigate the character of the asymptotic state we ran two different
simulations. One (represented in figure 23) corresponds to an initial condition taken
from the closest slowly rotating, rapidly oscillating helical wake (regime XVII), and the
other one was started from the closest wake with vortex shedding and planar symmetry
(regime XIV). In both cases the rapid oscillation at St ≈ 0.1 tends to disappear. In the



236 M. Kotouč, G. Bouchet and J. Dušek
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Figure 24. (a) Lift coefficient components Cy (full line) and Cz (dotted line) as functions of
time at Ri = −0.13, Re =190 and Pr = 7 (XVII). (b) Lift coefficient in the (Cy,Cz) plane at
the same point of the parameter space. (c) Axial isovorticity surfaces at ωx = ±0.1 at Re =200,
Ri = −0.13 and Pr = 7.

first case, the lift slowly rotates about the flow axis, describing an almost perfect circle,
which means that the solution contains only one helical mode associated with the
(slow) unstable eigenpair. In the second case, the initial condition brings about, after
a rapid decay of the rapidly oscillating mode, two slow helical modes with exactly the
same amplitude, resulting in a very slow lift oscillation in a plane containing the flow
axis. A weakly nonlinear theory allows only for one of the two states to be stable if
nonlinear coupling of helical modes is present. Close to the threshold the couplings
are very weak, and an extremely long simulation would have been necessary to let
the unstable initial condition evolve to the stable asymptotic state. Nevertheless, the
second simulation was found to present a rapid increase of the projection of the
lift perpendicular to the initial symmetry plane, proving that the regime with two
equal helical modes is unstable. Figure 23 thus represents the stable solution. Three-
dimensional visualization of the vortical wake structure does not hold much interest
because of the very slow rotation. The small helicity is not visible on the length scale of
the computational domain extending only 25 diameters downstream of the sphere. At
this scale, the axial vorticity isosurface is thus indistinguishable from that in regime I.

8.4.2. Slowly rotating, rapidly oscillating helical wake (XVII) (Pr = 7)

As seen by comparing figures 23 and 24, the regime results from a superimposition
of two helical modes, one being slow and the other rapid. Note the π/2 phase shift
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Figure 25. Simulation at Pr = 7, Ri = −0.15, Re = 210 (XVIII): (a) path of the lift coefficient
in the (Cy,Cz) plane; (b) Cz versus time plot providing an idea of the period of the ellipse
oscillation; (c), (d) two three-dimensional plots of the wake (surfaces at ωx = ±0.2) from two
perpendicular views, showing a temporary symmetry.

of the slow oscillation yielding the almost perfectly circular motion due to the slow
helical mode. Very soon (between Re = 180 and Re = 185 at Ri = −0.13), the rapid
oscillations decaying in figure 23 become amplified and saturate to the new regime
represented in figure 24. The latter is characterized by a superimposition of the slow
helical mode, resulting from the slow primary eigenvalue, described in the previous
section, and from a rapid helical one yielding the rapid spiral in figure 24(b). The
Strouhal number of the rapid oscillations remains very close to St =0.1; the slow
rotation has a period of about 400 time units (St = 0.0025) in this case. The helical
character of the rapid mode is clearly visible in figure 24(c). It is to be noted that, in
spite of the qualitative resemblance of figures 17(a) and 24(b), the origin of regimes
XIII and XVII is quite different. In regime XIII the slow rotation is due to the
coupling between a steady and an oscillating state. A closer look at the flow structure
(figures 17c and 24c) shows also that the wake in regime XIII is very close to having
a planar symmetry while that in regime XVII is clearly helical.

8.4.3. Slowly laterally oscillating helical wake (XVIII) (Pr = 7)

This regime assures the transition between regimes with planar symmetry and zero
mean lift on the side of more negative Richardson numbers and those with a non-zero
mean lift on the side of less negative Richardson numbers. In the (Cy, Cz) plane, it is
characterized by an ellipse, described with the typical rapid Strouhal number close to
0.1 that changes periodically both its aspect ratio and its direction. The direction of
the ellipse no longer rotates; it oscillates within a certain angle. There is no permanent
planar symmetry, but at the moment at which the ellipse is flat the wake assumes
temporarily a symmetrical aspect.

The slow frequency evolves from a value obviously linked to the slow eigenpair
responsible for the two previously described regimes (XVI, XVII) in the regime
represented in figure 25 to a Strouhal number of about 0.01, i.e. to a period about
three times shorter, in figure 26(d ). In figure 25(c, d) the temporary symmetry plane
has been captured. The lift paths are represented over one (long) oscillation period of
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Figure 26. (a), (b) Path of the lift coefficient and Cy,Cz versus time plot (full line: Cy; dashed
line Cz) at Pr = 7, Ri = −0.15 and Re = 220. (c), (d), (e) Pr =7, Ri = −0.13 and Re =240.
(c) Path of the lift coefficient; (d) Cy versus time plot; (e) wake structure (ωx = ±0.2). Both
cases are examples of regimes numbered XVIII.

the ellipse except for figure 26(c), where five periods of about 100 time units each are
plotted to show the regular biperiodic dynamics resembling a Lissajous figure. At the
upper and left limits, the subdomain is bordered by rotating regimes presenting one
more frequency, intermediate between the slow rotation and rapid oscillation. This
results in a seemingly chaotic lift path (see figure 27a). Nevertheless, the Cy versus
time plots (figure 27b) still present an obvious periodicity on the scale of a 100 time
units. The new frequency is clearly comparable to the quasi-periodic modulation of
the regimes III and XX (see § 8.4.5).

8.4.4. Slowly laterally oscillating helical wake (XIX) (Pr =0.72)

At Pr = 0.72 a similar behaviour was found in a very restricted parameter domain,
namely at Ri = −0.1 and Re = 230, 240 (figure 28). The regime is characterized by
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Figure 27. (a) Path of the lift coefficient and (b) Cy versus time plot at Pr = 7, Ri = −0.1
and Re = 270 (XVIII).
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Figure 28. Simulation at Pr = 0.72, Ri = −0.1 and Re = 230 (XIX): (a) Cy versus time;
(b) lift path over the last 1100 time units (period) of (a).

oscillations with varying helicity and varying principal oscillation direction. The found
dynamic has an extremely large period of about 1100 time units at Re = 230 due
to the toggling of the predominant lift direction from Cy > 0 to Cy < 0. It presents,
again, a temporary symmetry plane. At Re = 240 the toggling is absent, yielding a
period of about 550 time units.

8.4.5. Quasi-periodic vortex shedding with planar symmetry and zero mean lift (XX)

At Pr = 0.72 this regime was found to exist only in the intermediate zone at
Richardson numbers between −0.09 and −0.17, whereas at Pr =7, it is situated more
to the left, between Ri = −0.17 and Ri = −0.4. It is the counterpart of the quasi-
periodic regime III except for the mean lift, which is zero in the present case. The basic
difference between this regime and the quasi-periodic regime III described in § 6.3 is
analogous to that between figures 7 and 18. The wake presents a symmetry plane and
oscillates symmetrically about the flow axis, and the oscillations have quasi-periodic
dynamics with (at least) two frequencies. The fast frequency is approximately that
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of the periodic regime (St ≈ 0.1). The time dependence of the lift coefficient (and
all other flow variables) is mainly governed by this frequency and a secondary one
corresponding to St ≈ 0.03.

9. Global characteristics: drag and lift coefficients, Nusselt number
In an unheated sphere wake the drag coefficient is only weakly affected by

instabilities (see Bouchet et al. 2006). It is so because it is related only to the
m =0 mode, which is modified by the primary instability only proportional to the
square of the instability amplitude. The Nusselt number integrates the heat flux over
the whole sphere surface and is thus also related to the m =0 mode. In contrast, the
modification of the lift is a first-order effect and is expected to be affected by the
changes of regimes in a non-negligible way. The same is to be expected in mixed
convection. Because of the different scales of the plots, the results are presented
separately for assisting and opposing flows.

Whenever the flow regimes are unsteady, the values of drag coefficient and Nusselt
number are taken as time averages. The root mean square (r.m.s.) of the drag and
heat flux fluctuations in all our simulations was found to be less than 1 % of the
mean values in all unsteady regimes, even in chaotic ones. Therefore we present r.m.s.
of fluctuations only for lifts in unsteady regimes. The symbols on the curves represent
points at which the value was computed and correspond to concrete flow regimes as
defined in the legend of figures 2 and 4.

9.1. Assisting flow

The drag coefficients as functions of Reynolds number (0 � Re � 1000) for different
values of Grashof number (0 � Gr � 5×105) at Pr = 0.72, obtained from axisymmetric
simulations, were plotted in figure 7 in Kotouč et al. (2008). The available bibliography
provides mostly data at low Reynolds numbers lying perfectly in the axisymmetric
domain. In Kotouč et al. (2008) it was shown that our axisymmetric simulations
reproduce very well e.g. the relations proposed by Hieber & Gebhart (1969). Although
it was shown, in the same paper, that most of the obtained values are physically
relevant, some of them lay beyond the regular-instability threshold. The main question
that arises is how the different three-dimensional regimes modify the mean value and
the amplitude of the drag coefficient.

Figure 29 shows the curves of the drag coefficient as a function of Re at both
Pr = 0.72 and Pr =7 and at several Ri numbers. In unsteady regimes, mean values are
plotted. No change in the slope of the curves when passing either from axisymmetric
to three-dimensional flows or through different three-dimensional regimes is visible.
Bouchet et al. (2006) reported a change in the slope of the curves at each bifur-
cation; the observed change of the slopes is, however, too small to be distinguished
in the curves of figure 29. However, if the drag of axisymmetric flow is compared
to the correct curve obtained in a fully three-dimensional simulation, there is a clear
difference: the instability shifts the drag upward (see inset in figure 29). The r.m.s. of
the drag oscillations in our simulations was found to be less than 1 % of the mean
value in all unsteady regimes. Therefore it was not plotted.

One of the most visible effects of the three-dimensionality of the flow is the existence
of a lift. In figure 30 we present the mean values of the instantaneous lift coefficients,
defined as

CL =
√

<Cy>2 + <Cz>2, (9.1)
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Figure 29. Values of the drag coefficient as a function of Re (a) at Ri = 0, 0.1, 0.3, 0.5
and 0.7 at Pr = 0.72 and (b) at Ri = 0, 0.1, 0.2 and 0.3 at Pr =7. The different symbols,
used also in figures 30–32, represent points at which the values of the drag coefficient were
computed and correspond to the flow regimes defined in the legend of figure 2. The values of
the drag coefficient are connected by straight lines to help to associate points corresponding
to a constant Richardson number. Dashed line: empirical law of Clift, Grace & Weber (1978)
for unheated sphere (Ri = 0). Inset: comparison of the real drag (full line) and the result of
axisymmetric computation at Ri = 0.1 (dashed line).
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Figure 30. Mean value of the lift coefficient as a function of Re for a few selected values of
Ri at (a) Pr = 0.72 and (b) Pr = 7, connected by straight lines.

where <Cy> and <Cz> are the time averages of the projections of lift coefficient onto
y- and z-axis perpendicular to the flow direction as a function of Re for all values
of Ri . Only cases in which such a value is meaningful are considered. The mean lift
of chaotic regimes (XII), as well as that of the non-periodic rotating regimes (XI),
where the symmetry plane has already been broken, are considered zero and thus are
not plotted in the figure. The typical path of the projection of the lift coefficient onto
a plane perpendicular to the flow axis, shown in figure 16(a), allows to conclude that
even if at short time scales the average seems to be non-zero, its long-time-converged
value is zero. Note also that the lift is zero for steady regimes with four (IV) and
six (V) vorticity threads and that its average value is zero for the planar symmetric
periodic regime with four oscillating vorticity threads (VII). In contrast with the drag
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Figure 31. The values of r.m.s. of the lift coefficients.

coefficient, the lift coefficient presents significant changes of trend at each change
of regime. In spite of the different shape of each plotted curve (corresponding to
a constant Ri ), which is due to the fingerprint of the rich variety of flow regimes
evidenced, the trend of the lift is to decrease with increasing Richardson number.

The description of the lift forces in different unsteady regimes would be incomplete
if a value, describing the amplitude of the oscillations, were not supplied. The r.m.s.,
defined as

r.m.s. (CL) =
√

〈(Cy − <Cy>)2〉 + 〈(Cz − <Cz>)2〉, (9.2)

(<> stands, again, for a time average) is plotted for all, except chaotic (XII) and
nonplanar-symmetric (XI) regimes in figure 31. The latter were not included in the
plot because the simulations could not be run systematically until convergence. (Note
that the r.m.s. is used to accommodate all the non-periodic regimes in their variety
and not because of a statistical sampling.)

Again, a global trend is towards growing fluctuations of the wake with Re for a
constant Ri . A change in the slope of those curves is visible when a sub-harmonic
frequency sets in – the fluctuations are enhanced. In contrast, the wake fluctuations
are attenuated as Ri grows.

The overall Nusselt number, defined as

Nu = 2
Q̇

Q̇cond,th

, (9.3)

where

Q̇cond,th = 2πλ(TS − T∞)d (9.4)

is the theoretical, purely conductive heat flux and Q̇ is a calculated overall (conductive
and advective) heat flux, is plotted as a function of Reynolds number for different
constant values of Richardson number in figure 32 for both (a) Pr =0.72 and
(b) Pr = 7. Similarly to the drag coefficient plots, no visible change in the slopes of
curves related to the changes of regimes were observed at Pr = 0.72. The Nusselt
number, Nu , increases with Re for a constant Ri and increases with Ri for a
constant Re. Therefore the curves do not cross each other. Figure 32(a) contains
also the experimental law of Yuge (1960; dashed line), and the inset provides
comparison between axisymmetric computation at Ri = 0.1 and numerical results
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Figure 32. The (average, in unsteady regimes) Nusselt number as a function of Re for
Ri =0, 0.1, 0.2, 0.3 and 0.5 at (a) Pr = 0.72 and for Ri = 0 and 0.3 at (b) Pr = 7, connected
by straight lines. (a) Dashed line: empirical law of Yuge (1960) at Ri = 0 – for higher Ri the
law does not apply to Reynolds number exceeding 100; inset: comparison to axisymmetric
computation (dashed line) at Ri = 0.1; bullets and asterisks between Re = 100 and 200: results
of Bhattacharyya & Singh (2008) at Ri =0 and 0.1, respectively; short full line: Ri = 0; long
full line: Ri = 0.1.

of Bhattacharyya & Singh 2008. Yuge’s (1960) law seems to underestimate and
Bhattacharyya & Singh 2008 seem to overestimate the Nusselt number.

In contrast, as shown in Kotouč et al. (2008), the value of the Nusselt number at
Pr = 7 is more sensitive to the different types of flow regimes. As a result, before the
onset of recirculation, the curves Nu versus Re depend on Ri , whereas beyond the
recirculation threshold they would be practically superimposed if three-dimensionality
did not set in. For clarity, the Nusselt number dependence on the Reynolds number
was plotted only for the extreme values of Ri (0 and 0.3) in figure 32(b). It is seen
that the dashed line of Ri = 0.3 approaches the solid line of Ri = 0 at Re = 200.
Without the transition to three-dimensionality of the Ri = 0 flow both curves would
cross at Re = 250, the threshold of the onset of recirculation for Ri = 0.3. Instead the
primary bifurcation lowers the Nusselt number and shifts the solid curve downward.
The consecutive regimes reverse the trend and increase the slope. Finally, at Re ≈ 370
the curves cross when the three-dimensional regime sets in at Ri = 0.3.

9.2. Opposing flow

Figure 33 shows, again, the dependence of the drag coefficient on Reynolds number
for a few selected Richardson numbers. In opposing flow, contrarily to the trend in
the assisting flow configuration, the drag coefficient decreases for increasing absolute
value of Richardson number at constant Reynolds number. This is clearly due to the
buoyant forces near the sphere surface and their opposing effect on the inertial forces
resulting in a reduced pressure gradient. The decrease of drag with decreasing Ri at
a constant Re is somewhat stronger at Pr =0.72. The curves at Ri = 0 are, of course,
identical for both Prandtl numbers because, in this case, the velocity field is uncoupled
from the temperature one. They are, of course, also identical to that represented in
§ 9.1 concerning assisting flow. The change in the slope of the Ri = constant curves is
almost invisible at the regular bifurcation. The Hopf bifurcation enhances the drag
coefficient. This enhancement is stronger when the Hopf bifurcation appears in the
steady axisymmetric flow (as a primary bifurcation) at more negative Richardson
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Figure 34. The mean lift coefficient as a function of Re for (a) Pr = 0.72 and (b) Pr = 7 for
a few selected values of Ri .

numbers. At the secondary Hopf bifurcation, the change of the trend of the curves is
weak again. The changes of slope of the curves for Ri � −0.1 are better visible in the
detailed views in the upper right corners of figure 33.

Figure 34 shows the values of the lift coefficient as functions of Re for some selected
Ri . In unsteady regime the time-averaged lift coefficient is represented. Note that the
mean value of the lift of oscillatory regimes with planar symmetry XIV and XX is
zero. In the same way, the mean lifts of chaotic regimes XII, as well as that of all
rotating regimes, are considered zero and thus are not plotted in the figure. Roughly
speaking, the mean lift coefficient decreases with increasing |Ri| at Pr =0.72, whereas
it increases at Pr = 7 between Ri = 0 and Ri = −0.1. The onset of oscillations tends
to make the mean lift decrease. The maxima of the plotted curves are always reached
shortly after the onset of the secondary Hopf bifurcation.

The values of the r.m.s. of the fluctuations of lift coefficient are plotted in figure 35.
The trend towards increasing amplitudes with increasing Re for a constant Ri appeares
to be limited to the earliest stages of transition at both values of Pr .
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Figure 36. The Nusselt number as a function of Re for (a) Pr =0.72 and (b) Pr = 7 for two
extreme values of Ri : Ri = 0 and Ri = −0.2.

Figure 36 shows the values of the Nusselt number. The dependence of Nu on Re
was plotted only for two extreme cases: Ri =0 and Ri = −0.2. At Ri = 0, where at
both Prandtl numbers the flow regimes are the same, the Nusselt number at Pr =7
is approximately twice as high as that at Pr = 0.72. This is due to a reduced diffusive
heat transfer at higher Prandtl numbers (the dependence of Nu on Pr was shown in
Kotouč et al. 2008). In the same paper, it was shown that, at Pr = 0.72, the sensitivity
of Nu to the Richardson number Ri at a constant Re is stronger. This can be clearly
seen in figure 36 – the gap between the curves of Ri = 0 and Ri = −0.2 for a constant
Re is much greater at Pr = 0.72 than at Pr = 7. In both cases, Nu decreases as the
absolute value of Ri increases for a constant Re. This, again, is due to the adverse
action of the buoyant forces, which thicken the thermal and velocity boundary layers.
The change in the slope of the Nu versus Re dependence (mainly visible at Pr =7) is
due to supercritical regimes. It has already been evidenced in assisting flow. It lowers
the slope of the curves at the onset of three-dimensionality. Roughly speaking, the
transition affects the Nusselt number only weakly.
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10. Conclusions
In this paper, investigations of three-dimensional steady and unsteady flow regimes

of a flow past a fixed heated sphere in mixed convection in the configurations of
assisting and opposing flows have been carried out. The three-dimensional Ri–Re–Pr
parameter space was swept for two fixed values of Prandtl number (0.72 and 7) in a
domain corresponding to transition from a steady axisymmetric flow to chaos.

Despite the stabilizing effect of assisting flow, at least up to Ri ≈ 1 the flow appears
to loose its linear stability. The most striking feature of the transition in assisting flow
is the important role of higher azimuthal subspaces m > 1. The first stage of transition
consists, in all the investigated cases of assisting flow, in axisymmetry breaking via a
regular bifurcation, but the bifurcation arises in azimuthal subspaces characterized by
increasing azimuthal wavenumbers when the Richardson number grows. The scenario
typical for an unheated sphere is limited to Richardson numbers smaller than 0.3
both for the low (0.72) and high (7) Prandtl numbers considered here. At higher
Richardson numbers completely new transitional regimes arise as a result of coupling
of two or more azimuthal subspaces.

In opposing flow, the destabilizing effect of the convection shifts the primary-
instability threshold to lower Reynolds numbers. The transition represents a
continuation of the trend observed in assisting flow only in a very restricted domain
of small negative Richardson numbers (Ri > −0.1). Its main feature is the presence
of a primary Hopf bifurcation at more negative Richardson numbers. The lines
representing the threshold of the primary regular and Hopf bifurcations intersect
at Ri = −0.13 for Pr = 0.72. At Richardson numbers close to this intersection the
transition scenario is characterized by clearly identified nonlinear states related to
both types of bifurcations. At Pr = 7 a still more intriguing phenomenon has been
evidenced. Before intersecting the threshold of the rapid Hopf bifurcation, the regular
bifurcation gives way to a slow Hopf bifurcation arising due to a collision of two
real eigenvalues giving rise to a complex eigenpair with a small imaginary part. The
fingerprint of this slow eigenpair is characteristic of the transitional regimes in a whole
domain between Ri = −0.1 and Ri = −0.2 at Pr = 7. At more negative Richardson
numbers the scenario is qualitatively similar for both investigated Prandtl numbers.
It consists of a primary regime with vortex shedding, zero mean lift and a symmetry
plane related directly to the Hopf bifurcation. This symmetry gets lost rather rapidly
due to the onset of rotation of the symmetry plane around the flow axis in a relatively
long stage of transition to chaotic dynamics.

The combined results obtained for assisting and opposing flows show that
convective effects yield a very large variety of regimes that must be taken into
account especially if more refined information is needed than just the drag and the
global Nusselt number. The transitional regimes are likely to have an especially
significant impact on sedimentation of millimetric particles in water and sub-
millimetric (d ∼ 0.1 mm) particles in air and are likely to be still more important
for the dynamics of rising (light) particles. Beyond this application, the evidenced
transition scenarios represent an interesting theoretical laboratory shedding light on
the large variety of possible nonlinear phenomena.

The presented study allows us also to assess the strength and the limits of
the methodology of parametric investigation. The advantage of such investigations
consists in providing a comprehensive overview covering, in principle, any particular
configuration. However, the number of parameters rapidly grows proportional to the
complexity of phenomena accounted for. The next logical stage is, for example, the
investigation of freely moving spheres with an account of thermal effects. This adds



Mixed convection in the wake of a fixed sphere 247

another parameter (solid/fluid density ratio) to the problem description. Despite the
fact that, technically, the problem of simulation of the free sphere motion has already
been solved in a sufficiently efficient way to enable a parametric investigation, the
question of feasibility and relevance of such a study has to be raised, in particular, in
view of serious limitations of the Boussinesq model.
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Wang, A.-B., Trávnı́ček, Z. & Chia, K.-C. 2000 On the relationship of effective Reynolds number
and Strouhal number for the laminar vortex shedding of a heated circular cylinder. Phys.
Fluids 12, 1401–1410.

Wong, K. L., Lee, S. C. & Chen, C. K. 1986 Finite element solution of laminar combined convection
from a sphere. J. Heat Transfer 108, 860–865.

Wu, M.-H. & Wang, A.-B. 2007 On the transitional wake behind a heated circular cylinder. Phys.
Fluids 19, 084102–1–9.

Wu, S. J., Miau, J. J., Hu, C. C. & Chou, J. H. 2005 On low-frequency modulations and three-
dimensionality in vortex shedding behind an normal plate. J. Fluid Mech. 526, 117–146.

Yuge, T. 1960 Experiments on heat transfer from spheres including combined natural and forced
convection. J. Heat Transfer 82, 214–220.


